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100k by a space, e.g. MJ m~2 not MJm~?: this is not strictly necessary but is an
id to clarity.

. Finally it should be reemphasized that strain is simply a number. It is a
imensionless quantity and is not expressed in physical units.

Example The shzar stress required to nucleate a grain boundary crack in
high-temperature deformation has been estimatzd to be

3ny,G |2
81— 1)L

where y, is the grain boundary surface energy, let us say 2 J m~2; G is the
shear modulus, 75 GPa; L is the grain boundary sliding distance, assumed
equal to the grain diameter 0.01 mm, and v is Poisson’s ratio, v = 0.3. To cal-
culate 7 we need to be sure the units are consistent and that the prefixes have
been properly evaluated.

To check the equation express all units in newtons and meters.

=

T= = 2
m?, 2

m?  m? AZJS N
“m
Note that a joule (J) is a unit of energy; J = N m {see Appendix A)

q|A 3m x 2 x 75 x 10°
§1—-03)x 1072 x 1073

= 1589 x 10’ Nm~2
= 1589 MN m~2 = 158.9 MPa

1/2
v = (2524 x 10*4)!/2
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CHAPTER

TWO

STRESS AND STRAIN RELATIONSHIPS FOR
ELASTIC BEHAVIOR

2-1 INTRODUCTION

The purpose of this chapter is to present the mathematical relationships for
expressing the stress and strain at a point and the relationships between stress and
strain in a solid which obeys Hooke’s law. While part of the material covered in
this chapter is a review of information generally covered in strength of materials,
the subject is extended beyond this point to a consideration of stress and strain in
three dimensions. The material included in ‘this chapter is important for an
understanding of most of the phenomenological aspects of mechanical metallurgy,
and for this reason it should be given careful attention by those readers to whom
it is unfamiliar. In the space available for this subject it has not been possible to
carry it to the point where extensive problem solving is possible. The material
covered here should, however, provide a background for intelligent reading of the
more mathematical literature in mechanical metallurgy.

It should be recognized that- the equations describing the state of stress or
strain in a body are applicable to any solid continuum, whether it be an elastic or
plastic solid or a viscous fluid. Indeed, this body of knowledge is often called
continuum mechanics. The equations relating stress and strain are called constifu-
tive equations because they depend on the material behavior. In this chapter we
shall only consider the constitutive equations for an elastic solid.

2-2 DESCRIPTION OF STRESS AT A POINT

As described in Sec. 1-8, it is often convenient to resolve the stresses at a point
into normal and shear components. In the general case the shear components are
at arbitrary angles to the coordinate axes, so that it is convenient to resolve each
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Figure 2-1 Stresses acting on an ele-
mental cube.

wear stress further into two components. The general case is shown in Fig. 2-1.
resses acting normal to the faces of the elemental cube are identified by the
ibscript which also identifies the direction in which the stress acts; that is g, 1s
€ normal stress acting in the x direction. Since it is a normal stress, it must act
1 the plane perpendicular to the x direction. By convention, values of normal
resses greater than zero denote tension; values less than zero indicate compres-
on. All the normal stresses shown in Fig. 2-1 are tensile.

Two subscripts are needed for describing shearing stresses. The first subscript
«dicates the plane in which the stress acts and the second the direction in which
ie stress acts. Since a plane is most easily defined by its normal, the first
ibscript refers to this normal. For example, 7, is the shear stress on the plane
:rpendicular to the y axis in the direction of the z axis, 7, is the shear stress on
plane normal to the y axis in the direction of the x axis.

A shear stress is positive if it points in the positive direction on the positive
ce of a unit cube. (It is also positive if it points in the negative direction on the
:gative face of a unit cube.) All of the shear stresse$ in Fig, 2-2a are positive
iear stresses regardless of the type of normal stresses that are present. A shear
ress is negative if it points in the negative direction of a positive face of a unit
tbe and vice versa. The shearing stresses shown in Fig. 2-2b are all negative
resses.

+y +y

ﬁ K . d W K
=y 4 Figure 2-2 Sign convention for shear
(a) (8) stress. (a) Positive; (b) negative.
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The notation for stress given above is the one used by Timoshenko' and most

American workers in the field of elasticity. However, many other notations have
been used, some of which are given below.

—

Oy o1 kk XX Prx
% On mw m\w Pyy
g, 033 NN \N’N. Pz
T, o X, O Py
Tyz 023 Y, v\m Py:

—

Tzx 031 Nx zZXx Prx

It can be seen from Fig. 2-1 that nine quantities must be defined in order to
establish the state of stress at a point. They are o,, 9,, 0,, T, ), Tezs Tyres Tyzs Toxo
and .. However, some simplification is possible. If we assume that the areas of
the faces of the unit cube are small enough so that the change in stress over the
face is negligible, by taking the summation of the moments of the forces about the

z axis it can be shown that 7., = 7,

yx:
.. AyAz)Ax=(1,_AxAz)A
AQ yAz) AE )4y (2-1)
Tey = Tyx
and in like manner
Tz = Tox q.kn = q.u&

Thus, the state of stress at a point is completely described by six components:
three normal stresses and three shear stresses, o,, 0,, 0,, Ty ), Te;s Ty

2-3 STATE OF STRESS IN TWO DIMENSIONS (PLANE STRESS)

Many problems can be simplified by considering a two-dimensional state of
stress. This condition is frequently approached in practice when one of the
dimensions of the body is small relative to the others. For example, in a thin plate
loaded in the plane of the plate there will be no stress acting perpendicular to the
surface of the plate. The stress system will consist of two normal stresses o, and
0, and a shear stress 7. A stress condition in which the stresses are zero in one
of the primary directions is called plane stress.

Figure 2-3 illustrates a thin plate with its thickness normal to the plane of the
paper. In order to know the state of stress at point O in the plate, we need to be
able to describe the stress components at O for any orientation of the axes
through the point. To do this, consider an oblique plane normal to the plane of
the paper at an angle 6 between the x axis and the outward normal to the oblique
plane. Let the normal to this plane be the x’ direction and the direction lying in

1§, P. Timoshenko, and J. N. Goodier, “Theory of Elasticity,” 2d ed., McGraw-Hill Book
Company, New York, 1951.
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Figure 2-3 Stress on oblique
i plane (two dimensions).

1e oblique plane the y’ direction. It is assumed that the plane shown in Fig. 2-3
i an infinitesimal distance from O and that the element is so small that variations
1 stress over the sides of the element can be neglected. The stresses acting on the
blique plane are the normal stress ¢ and the shear stress 7. The direction cosines
etween x’ and the x and y axes are [ and m, respectively. From the geometry of
ig. 2-3, I = cos § and m = sin 6. If A is the area of the oblique plane, the areas
[ the sides of the element perpendicular to the x and y axes are Al and Am.
._LE. S, and S, denote the x and y components of the total stress acting T:
1e inclined face. By taking the summation of the forces in the x aMnomon and
1e y direction, we obtain _ _,

x4 g Al +Jn..,mﬂ A g
T x T2 A .hq._f i
o e M.t\m = 0.‘-,&&.13_ + ._-.-.ul»mw .
. ¥ S,=o.cos8 + Ty, Sind

S, =o,sinf + 7, cos

he components of S, and S, in the direction of the normal stress ¢ are
S,y =S5,cosf and S§,, =S, sinf

)

» that the normal stress acting on the oblique plane is given by

0, = S,cosf + S, sind
0. =0, cos’d + g,sin’f + 21, sinf co @2)
! ; , Ty, Sin @ cos §
he shearing stress on the oblique plane is given by
Tyryr = S,c088 — S, sinf
(2-3)

Teryr = Tyy(C08* 8 — sin’ @) + (o, — 0,) sinf cos §

he stress a,, may be found by substituting 8 + =/2 for 6 in Eq. (2-2), since o,
orthogonal to a,..

o= 0,c08% (8 + m/2) + o, sin’ (8 + 7/2) + 21, 5in (8 + 7/2) cos (6 + m/2)
\d since sin (6 + 7/2) = cos @ and cos(8 + 7/2) = —sin 6, we obtain

o, = g, sin’6 + g,cos?f — 21, sinf cos 6 (2-4)
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Equations (2-2) to (2-4) are the transformation of stress equations which give the
stresses in an x’y’ coordinate system if the stresses in an xy coordinate system

and the angle 6 are known.
To aid in computation, it is often convenient to express Egs. (2-2) to (2-4) in
terms of the double angle 28. This can be done with the following identities:

cos20 + 1
2
1 — cos2f
2
2sinfdcos @ = sin28
cos? @ — sin? @ = cos20
The transformation of stress equations now become
o, +o, 0, —0

cos?d =

sin’ @ =

o=+ |x~|h cos26 + 7, sin 26 (2-5)
. o, +0o, o, —uo .
0y == = T oS 20 — 7., sin26 (2-6)
QE - Q.k .
Ty = o sin26 + 7, ,cos 26 (2-7)

:wmaﬁonmaﬁo:oa%ﬂo\t+aﬁuax+q\.qabzmgomcaomﬁmconam_
stresses on two perpendicular planes is an invariant quantity, that is, it is
independent of orientation or angle 6.

Equations (2-2) and (2-3) and their equivalents, Egs. (2-5) and (2-7), describe
the normal stress and shear stress on any plane through a point in a body
subjected to a plane-stress situation. Figure 2-4 shows the variation of normal
stress and shear stress with 8 for the biaxial-plane-stress situation given at the top

of the figure. Note the following important facts about this figure:

1. The maximum and minimum values of normal stress on the oblique plane
through point O occur when the shear stress is zero.

2. The maximum and minimum values of both normal stress and shear stress
occur at angles which are 90° apart.

3. The maximum shear stress occurs at an angle halfway between the maximum
and minimum normal stresses.

4. The variation of normal stress and shear stress occurs in the form of a sine
wave, with a period of # = 180°. These relationships are valid for any state of
stress.

For any state of stress it is always possible to define a new coordinate system
which has axes perpendicular to the planes on which the maximum normal
stresses act and on which no shearing stresses act. These planes are called the
principal planes, and the stresses normal to these planes are the principal stresses.
For two-dimensional plane stress there will be two principal stresses o, and o,
which occur at angles that are 90° apart (Fig. 2-4). For the general case of stress
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Compression <—+— Tension

-30

—40

jure 2-4 Variation of normal stress and shear stress on oblique plane with angle 6.

three &Hobaonm there will be three principal stresses o, 0,, and ¢,. According
convention, o, is the algebraically greatest principal stress, while o, is the
zebraically smallest stress. The directions of the principal stresses are the
EQ.N& axes 1, 2, and 3. Although in general the principal axes 1, 2, and 3 do
it coincide with the cartesian-coordinate axes x, y, z, for many situations that
e a:oﬁ.uciﬂma in practice the two systems of axes coincide because of symmetry
_om.aEm and deformation. The specification of the principal stresses and their
rection provides a convenient way of describing the state of stress at a point.

.m:._on.g definition a principal plane contains no.shear stress, its angular
lationship with respect to the xy coordinate axes can be determined by finding
e values of # in Eq. (2-3) for which =, ., = 0,

X0y

7,,(cos?8 — sin*8) + (o, — 0,) sinfcos @ = 0

'sinf cos @ (sin28) 1

‘_.k‘z . _ 2
o,—0o, cos’@—sin’f  cos26 2 ian 26
2T
tan20 = —~ (2-8)

o, —o,
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Since tan 26 = tan(m + 26), Eq. (2-8) has two roots, 8, and #, =0, + nn/2.
These roots define two mutually perpendicular planes which are free from shear.
Equation (2-5) will give the principal stresses when values of cos28 and
sin 20 are substituted into it from Eq, (2-8). The values of cos 28 and sin 20 are
found from Eq. (2-8) by means of the pythagorean relationships.
T

+ uk.c e

—Aaw — owv /4 + T,
AQX - ﬂev\m

(0, = 0,)/8 + 2,

Substituting these values into Eq. (2-5) results in the expression for the maximum
and minimum principal stresses for a two-dimensional (biaxial) state of stress.

sin28 = _H\N

cos26 = +

ﬁ\n

Opax = 0y IQx+QyH Aoalakv~+,_.~ 172 Aw-ov
xy .

Opin =02 2 2

The direction of the principal planes is found by solving for @ in Eq. (2-8),
taking special care to establish whether 24 is between 0 and 7/2, m, and 37/2,
etc. Figure 2-5 shows a simple way to establish the direction of the largest
principal stress o,. o, will lie between the algebraically largest normal stress and
the shear diagonal. To see this intuitively, consider that if there were no shear
stresses, then o, = ;. If only shear stresses act, then a normal stress (the principal
stress) would exist along the shear diagonal. If both normal and shear stresses act
on the element, then o, lies between the influences of these two effects.

To find the maximum shear stress we return to Eq. (2-7). We differentiate the
expression for .., and set this équal to zero.

dry, .
T (o, — 0,) cos28 — 27, sin26 =0
_ _ (2-10)
o,— 0, o, —0
tan20, = =—= = - ——~
27, 2T,

Comparing this with the angle at which the principal planes occur, Eq. (2-8),
tan 26, = 27,,/(o, — 0,), we see that tan 20, is the negative reciprocal of tan 26,

%
.«/ »
S ——— Ty
/1.
A'.# Sy _«|Yn.k
/!
% > =N
e ™~ %
Sheor
diagonal

Figure 2-5 Method of establishing direction of g,.
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1is means that 26, and 26, are orthogonal, and that 4, and 6, are separated in
race by 45°. The magnitude of the maximum shear stress is found by substitut-
g Eq. (2-10) into Eq. (2-7).

|9_|a.,_mdﬂ
Tmax = + % + ..._..«.,.—_ Awl.—mv

. Example The state of stress is given by o, = 25p and g, = 5p plus shearing
~stresses 7/,. On a plane at 45° counterclockwise to the plane on which o, acts
the stite of stress is 50 MPa ‘tension and 5 MPa shear. Determine the ﬂm_cam
of o, 0, 7,,.

From Egs. (2-5) and (2-7)

o, te, o,—0

=2 Y, X ¥ i
G = o W cos20 + 7,,sin26  Eq.(2-5)

25p+5p 25p -5

50 x 105 = 5 + 2 c0s90° + 1 sin 90°
2 0

15p + 7,, = 50 x 10° Pa

9, — 0y .,

Tey =~ 5 Sin 20 + 1,,c0s28  Eq.(2-7)
5p— 25p

5% 108 = A 5 vmmswoo + 7,05 90

—10p=5x10° p=—5x10°Pa
o, = 25(=5 X 10°) = —12.5 MPa
0,=5(p)= -2.5MPa
7., = 50 X 10¢ — 15(=5 x 10°)
- =50 %105+ 7.5 X 10 = 57.5 MPa

We also can find %y, orthogonal to a,. = 50 MPa, since o, + 0, =0, + o,

~12.5- 25 =50 + g,

—65 MPa

Q
It

4 MOHR’S CIRCLE OF STRESS—TWO DIMENSIONS

very useful graphical method for representing the state of stress at a point on
oblique plane through the point was suggested by O. Mohr. The transforma-
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tion of stress equations, Egs. (2-5) and (2-7), can be rearranged to give

o, t+a 0, — 0
ax\l|x~|Nu = mk cos28 + 7., sin28

g, — 0, .
‘_..:cﬂ‘ = |q| mE.-NQ + ﬁQOOmNQ

We can solve for o, in terms of 7,.,. by squaring each of these equations and

. 2
adding g ,Sﬁ 4 ._# L Ciax
W (——
~ Oy + g, ) foas 0~ 0,\?
(- 222 - (252) + 2 1)

Equation (2-12) is the equation of a circle of the form (x — k)* + y2=r?, Thus,
Mohr’s circle is a circle in o,., 7,.,» coordinates with a radius equal to 7., and the
center displaced (o, + 0,)/2 to the right of the origin.

In working with Mohr’s circle there are only a few basic rules to remember.
An angle of 8 on the physical element is represented by 26 on Mohr’s circle. The
same sense of rotation (clockwise or counterclockwise) should be used in each
case. A different convention to express shear stress is used in drawing and
interpreting Mohr’s circle. This convention-is that a shear stress causing a
clockwise rotation about any point in the physical element is plotted above the
horizontal axis of the Mohr’s circle. A point on Mohr’s circle gives the magnitude
and direction of the normal and shear stresses on any plane in the physical
element.

‘Figure 2-6 illustrates the plotting and use of Mohr’s circle for a particular
stress state shown at the upper left. Normal stresses are plotted along the x axis,
shear stresses along the y axis. The stresses on the planes normal to the x and y

g A
. -
Tx = Try A

T_DTL..@ a \
== .

Figure 2-6 Mohr's circle for two-
dimensional state of stress.
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ies are plotted as points 4 and B. The intersection of the line 4B with the ¢
is determines the center of the circle. At points D and E the shear stress is
ro, so these points represent the values. of the principal stresses. The angle
itween o, and ¢, on Mohr’s circle is 24. Since this angle is measured counter-
ockwise on Mohr’s circle on the physical element, o, acts counterclockwise from
e x axis at an angle 0 (see sketch, upper right). The stresses on any other plane
nose normal makes an angle of # with the x axis could be found from Mohr’s
rcle in the same way.

5 STATE OF STRESS IN'THREE DIMENSIONS

1c general three-dimensional state of stress consists of three unequal principal
'esses acting at a point. This is called a triaxial state of stress. If two of the three
incipal stresses are equal, the state of stress is known as cylindrical, while if all
ree principal stresses are equal, the state of stress is said to be hydrostatic, or
herical. )

The determination of the principal stresses for a three-dimensional state of
ess in terms of the stresses acting on an arbitrary cartesian-coordinate system is
extension of the method described in Sec. 2-3 for the two-dimensional case.
gure 2-7 represents an elemental free body similar to that shown in Fig. 2-1
th a diagonal plane JKL of area A. The plane JKL is assumed to be a
incipal plane cutting through the unit cube. o is the principal stress acting
rmal to the plane JKL. Let I, m, n be the direction cosines of a, that is, the
sines of the .,Em_aw between o and the x, y, and = axes. Since the free body in
g. 2-7, must be in equilibrium, the forces acting on each of its faces must

Figure 2-7 Stresses acting on elemental free
body.
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balance. The components of ¢ along each of the axes are S,, S,, and S,.
S, =oal S, =aom S,=on

x y
Area KOL = Al Area JOK = Am Area JOL = An

Taking the summation of the forces in the x direction results in

oAl — o, Al — 7,,Am — 7,,An =0

which reduces to

(o-o ) —1,,m—T1,n=0 (2-13a)
Summing the forces along the other two axes results in

-t ,+(6-0)m—1,n=0 (2-13b)

— Tl —1.m+(6—-0)n="0 (2-13¢)

Equations (2-13) are three homogeneous linear equations in terms of /, m,
and n. The only nontrivial solution can be obtained by setting the determinant of
the coefficients of /, m, and n equal to zero, since /, m, and n cannot all be zero.

g— o, |._”Fn T
Ty 00, ~T, (=0

=y —T. 00

Solution of the determinant results in a cubic equation in o.
o — (o, + o, + 0,)o? + Aauoe + 0,0, + 00, — qx d.n - ._.uwvo

AQan.an + 27 T, — axda - a..SwN - QN._.CV =0 (2-14)

The three roots of Eq. (2-14) are the three principal stresses o, 0,, and ag;. To
determine the direction, with respect to the original x, y, z axes, in which the
principal stresses act, it is necessary to substitute, g, 0,, and oy each in turn into
the three equations of Eq. (2-13). The resulting equations must be solved
simultaneously for !, m, and n with the help of the auxiliary relationship
P+m*+n=1

Note that there are three combinations of stress components in Eq. (2-14)
that make up the coefficients of the cubic equation. Since the values of these
coefficients determine the principal stresses, they obviously do not vary with
changes in the coordinate axes. Therefore, they are invariant coefficients.

o,+to,+o,=1I

: a2 22 2
00, + 0,0, +00 — T~ T, T, 1,

— 2 _ 2 _ =
00,0, + N._.Q eTxz — 03Ty — O)T; Qu._.av. I,

The first invariant of stress I; has been seen before for the two-dimensional state
of stress. It states the useful relationship that the sum of the normal stresses for
any orientation in the coordinate system is equal to the sum of the normal stresses
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r any other orientation. For example

. o,+0,+0,=0.+0,+0,=0 +0,+0, (2-15)
ﬁm.ﬁ_EEn “__.Unﬁnaun the principal stresses for the state of stress
‘ 0 -240 0
- —240 200 0 | MPa

0 0 —280,

Le 13

— (200 — " heoyo? + [ 200)( Nweﬁ:ﬁe_aiancz —240)% =

mnoE mn AN 14)

—280 ?\_wm is a vnso_mm_ m:omm _uoomcmo Tx=T,=0and 7,,=7,_=0

S

l

mmo;? = € + Lo — Tyela “« .Ncoa = Ghsu.

200 + : umcsu + 4(240)°]'* -
o = . =100 4260
o, =360 MPa; o, = —160 MPa; o, = —280 MPa

—

In the discussion above we developed the equation for the stress on a
wrticular oblique plane, a principal plane in which there is no shear stress. Let us
>w develop the equations for the normal and shear stress on any oblique plane
hose normal has the direction cosines /, m, n with the x, y, z axes. We can use
ig. 2-7 once again if we realize that for this general situation the total stress on
e plane S will not be coaxial with the normal stress, and that $2 = ¢2 + r2.
nce again the total stress can be resolved into components S, S,, S,, so that

=82+ 82+ S? (2-16)

iking the summation of the forces in the x, y, and z directions, we arrive at the
pressions for the orthogonal components of the total stress:

S;=ol+m,.m+r,n (2-17a)
S, = 1,0 +o,m+ 1,0 (2-17)
S, =1, +1,m+an (2-17¢)

To find the normal stress o on the oblique plane, it is necessary to determine

€ components of S,, S, S, in the direction of the normal to the oblique plane.
1us,

=S+ Sm+ Sn

, after substituting from Eqs. (2-17) and simplifying with Tey etc.

‘E«u

=0 l?+ oym® + o,n? + 21, Im + 27, mn + 27, nl (2-18)

Pt 5 S S S
o e TS oL —_ _

S
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The magnitude of the shear stress on the oblique plane can be found from
= §2 — 0% To get the magnitude and direction of the two shear stress
components lying in the oblique plane it is necessary to resolve the stress
components S,, S,, S, into the y* and 2z’ directions lying in the oblique plane.!
This n_n<n_ow=._r=~ EE not be carried out here because the pertinent equations can
be derived more easily by the methods given in Sec. 2-6.
Since plastic flow involves shearing stresses, it is important to identify the
planes on which the maximum or principal shear stresses occur. In our discussion

of the two-dimensional state of stress we saw that 7, occurred on a plane
halfway between the two principal planes. Therefore it is easiest to define the
principal shear planes in terms of the three principal axes 1,2,3. From 1=
S§? — o2 it can be shown that

= (0, — 6,)°1*’m? + (0, — 0;)*1*n? + (o, — 0;) m2n? (2-19)

where [, m, n are the direction cosines between the normal to the oblique plane
and the principal axes.

The principal shear stresses occur for the following combinations of direction
cosines that bisect the angle between two of the three principal axes:

{ m n T |
N 1 1 Gy — 0y ¥ _.
0 + 5 = 7| T T ¢
1 1 0 — 04 ANlNOv
+1/ — = -
L AT 0 == 7| ™ 5
7 1 1 0 g, — 0,
+y/ = | £V = =-—
V2 | *V2 E

Since according to convention o, is the algebraically greatest principal normal
stress and ¢, is the algebraically smallest principal stress, T, has the largest value
of shear stress and it is called the maximum shear stress 7,

o= 3 (2-21)

The maximum shear stress is important in theories of yielding and metal-forming
operations. Figure 2-8 shows the planes of the principal shear stresses for a cube
whose faces are the principal planes. Note that for each pair of principal stresses
there are two planes of principal shear stress, which bisect the directions of the
principal stresses.

! P. C. Chou and N. J. Pagano, “Elasticity,” p. 24, D. Van Nostrand Company, Inc., Princeton,
N.J., 1967.
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wre 2-8 Planes of principal shear stresses.

6 STRESS TENSOR

any aspects of the analysis of stress, such as the equations for the transforma-
m of the stress components from one set of coordinate axes to another
ordinate system or the existence of principal stresses, become simpler when it is
tized that stress is a second-rank tensor quantity. Many of the techniques for
inipulating second-rank tensors do not require a deep understanding of tensor
leulus, so it is advantageous to learn something about the properties of tensors.

We shall start with the consideration of the transformation of a vector (a
st-rank tensor) from one coordinate system to another. Consider the vector
= Syiy + 8i, + 84i;, when the unit vectors i), ,,#, are in the directions
» X3, X3. (In accordance with convention and convenience in working with
1501 quantities, the coordinate axes will be designated x,, x,, etc., where x, is
uivalent to our previous designation x, x, is equivalent to the old y, etc.)
+ 85, §; are the components of S referred to the axes x, x,. x,. We now want
find the components of S referred to the xi, x4, x; axes, Fig. 2-9. S/ is
tained by resolving S, S,, §; along the new direction x{.

S{

Sy cos (x;x]) + Sycos (x,x7) + S;cos (x;x])

S{ = ayS, + a,,8, + a;38, (2-22a)

iere aj; is the direction cosine between x{ and x,, a,, is the direction cosine
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A3

Figure 2-9 Transformation of axes for a vector.

between x| and x,, etc. Similarly,
Sy =ayS; +ans, +ays, (2-22b)
S{=ay8; +apS; +ay,s; (2-22¢)

We note that the leading suffix for each direction cosine in each equation is the
same, so we could write these equations as

3 3 3
Si= X ay;S; S;=X a8, 8= )y ay;S;
j=1 j=1 j=1
These three equations could be combined by writing

3
Si=% a.....,m_g.?. =1,2,3) = ay8; + 3,5, + 4,35, (2-23)
j=1
Still greater brevity is obtained by writing Eq. (2-23) in the Einstein suffix
notation

S/ = a,S, (2-24)

i ij

The suffix notation is a very useful way of compactly expressing the systems of
equations usually found in continuum mechanics. In Eq. (2-24) it is understood
that when a suffix occurs twice in the same term (in this case the suffix j), it
indicates summation with respect to that suffix. Unless otherwise indicated, the
summation of the other index is from 1 to 3.

In the above example, i is a free suffix and it is understood that in the
expanded form there is one equation for each value of i. The repeated index is
called a dummy suffix. Its only purpose is to indicate summation. Exactly the
same three equations would be produced if some other letter were used for the
dummy suffix, for example, S/ = a;,S, would mean the same thing as Eq. (2-24).

We saw in Sec. 2-5 that the complete determination of the state of stress at a
point in a solid requires the specification of nine components of stress on the
orthogonal faces of the element at the point. A vector quantity only requires the
specification of three components. Obviously, stress is more complicated than a



» MECHANICAL FUNDAMENTALS

«ctor. Physical quantities that transform with coordinate axes in the manner of
1. (2-18) are called tensors of the second rank. Stress, strain, and many other
1ysical quantities are second-rank tensors. A scalar quantity, which remains
ichanged with transformation of axes, requires only a single number for its
ecification. Scalars are tensors of zero rank. Vector quantities require three
mponents for their specification, so they are tensors of the first rank. The
imber of components required to specify a quantity is 3", where # is the rank of
e tensor." The elastic constant that relates stress with strain in an elastic solid is
fourth-rank tensor with 81 components in the general case.

Example The displacements of points in a deformed elastic solid (#) are
related to the coordinates of the points (x) by a vector relationship u; = e, X
Expand this tensor expression.

Since j is the dummy suffix, summation will take place over j = 1,2, 3.

u = Mumt.kg. =epX; tepx; +oepyxg

u; = Muww\x\ = eyX) t epX; T exxs

Uz = Mm&.x\. = ey X +oepnx; +oeyx;
The coefficients in these equations are the components of the strain tensor.
The product of two vectors A and B having components (4,, 4,, A;) and

1> By, By) results in a second-rank tensor 7;;. The components of this tensor
n be displayed as a 3 X 3 matrix.

I, T, Ty AB, A,B, AB,
T, = Ty Ty Ty|=|4,B, A,B, A,B,
Iy T, Ty A3B, A3B, AB,

1 transformation of axes the vector components become (A}, 43, 43) and
1> B3, B3). We wish to find the relationship between the nine components of T, J
d the nine components of T}/ after the transformation of axes.

Ai=a,;4; Bi=ayB,
A}B; ?:&&.Xathb

[
ik = a;;a,T,

(2:25)

Since stress is a second-rank tensor, the components of the stress tensor can
written as

O, 012 Oy O Ty T
0,;=|%1 On %y|=T 0 T,
031 03 On Tx Ty O

! A more precise relationship is N = k", where N is the number of components required for the
cription of a tensor of the nth rank in a k-dimensional space. For a two dimensional space only
I components are required to describe a second-rank tensor.
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The transformation of the stress tensor g;; from the x;, x,, x; system of axes to
the x{, x5, x4 axes is given by
(2-26)

Ok = Q4849
where i and j are dummy suffixes and k and / are free suffixes. To expand the
tensor equation, we first sum over j = 1, 2,3.

Oy = Ay a0, + 440150, + 8,,0/30,

Now summing over i = 1,2,3

Op = A0y + 41085017 + 34043013

+a,,a10y + A,0,305 F 428/30;

(2-27)
For each value of k and / there will be an equation similar to (2-27). Thus, to find
the equation for the normal stress in the x] direction, let k=1and /=1
[ 68,15 Gy = @y,d1,0y; T A0 T a1 d130)3

+a,3a0,05 + 4330,503 T 0433303

+a1501105 + 38150 + 3150303

= +ay38,,05; + 81381303 + 8130305

The reader should verify that this reduces to Eq. (2-18) when recast in the
symbolism of Sec. 2-5. .
Similarly, if we want to determine the shear stress on the x’ plane in the z’
direction, that is, 7., let k =1and / =3
013 = ay,a30y; + a110301; T 411353043
0150310y T+ 813030y T 8120330

+a13a3,03 + 41383503, T 013d3303;

It is perhaps worth emphasizing again that it is immaterial what letters are
used for subscripts in tensor notation. Thus, the transformation of a second-rank
tensor could just as well be written as T, =a,a,7,, where T, are the
components in the original unprimed axes and 7}; are the components _.m?_”_.& to
the new primed axes. The transformation law for a third-rank tensor is written

' =
H:c - &uh&i&cﬁﬁe\

The material presented so far in this section is really little more than tensor
notation. However, even with the minimal topics that have been discussed we
have gained a powerful shorthand method for writing the c:m.n unwieldy equa-
tions of continuum mechanics. (The student will find that this will greatly ease the
problem of remembering equations.) We have also gained a useful technique for
transforming a tensor quantity from one set of axes to another. There are o.Eu_ a
few additional facts about tensors that we need to consider. The student inter-
ested in pursuing this topic further is referred to a number of applications-
oriented texts on cartesian tensors.!

! L. G. Jaeger, “Cartesian Tensors in Engineering Science,” Pergamon Press, New York, 1966.
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A useful quantity in tensor theory is the Kronecker delta §, - The Kronecker
dIta is a second-rank unit isotropic tensor, that is, it has identical components in
1y coordinate system.

1 0 0] (7 gay
=J

§,=0 1 ouA e (2-28)
4 0 0 1 0 i+

ultiplication of a tensor or products of tensors by &, ; result in a reduction of
0 in the rank of the tensor. This is called contraction of the tensor. The rule is
ated here without proof but examples are given so we can make use of this
seration in subsequent discussions. Consider the product of two second-rank
nsors A, B,,. This multiplication would produce a fourth-rank tensor, nine
uations each with nine terms. If we multiply the product by 8, it is reduced to
second-rank tensor. ;

qw

A,,B,3,,=4,,B

vwgw Pqvg

1e “rule” is, replace w by ¢ and drop 8,.. The process of contraction can be
peated several times. Thus, 4, B, 8 8  reduces to A,,B,8,. on the first

ntraction, and then to 4, B, , which is a zero-rank tensor (scalar).

If we apply contraction to the second-rank stress tensor
Q:.m:. =0;=0, +0ptoy=1

: obtain the first invariant of the tensor (a scalar).
The invariants of the stress tensor may be determined readily from the matrix
its components. Since 0,, = 9,,, etc., the stress tensor is a symmetric tensor.

O %12 Opy
0;;=|%2 %2 On
O3 Oy O3y

ie first invariant is the trace of the matrix, i.e., the sum of the main diagonal
‘ms

Iy =0y, +o0y+oy,

ie second invariant is the sum of the principal minors. A minor of an element of
mnatrix is the determinant of the next lower order which remains when the row
d column in which the element stands are suppressed. Thus, taking each of the

incipal (main diagonal) terms in order and suppressing that row and column we
ve

03 0Oy
023 O3

011 03
4013 Os3

o o

11 12
I, = + +
01 O

nally, the third invariant is the determinant of the entire matrix of the
mponents of the stress tensor.

As an example of the advantages of the concepts that are provided by tensor
tation we shall derive again the equations for principal stress that were
veloped in Sec. 2-5. The reader is warned that it is easy to lose the physical
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significance in the mathematical manipulation. It is a basic E.no:wa oﬁw”nnmmﬂ
theory that there is some orientation of Ea.nooa_:mﬁ axes such U at the
components of a symmetric tensor of rank 2 will u:. be equal :,u zero for i # L__
This is equivalent to stating that the concepts of principal stress and principa
axes are inherent in the tensor character of stress. .

The three force summation equations, Egs. (2-17), can be written as

9,

(2-29)

;= 4ni0ij

where the suffix n is used to denote that we are dealing with ,;H, angles to the
normal of an oblique plane. If we let the oblique plane be a principal plane and
let the normal stress on it be o,, then we can write

0,; = 4,0, (2-30)
Combining Egs. (2-29) and (2-30)
Ah:..QC. - Dﬁ\.Q‘V = O AleHv
But, a,, = a,,8; (replace i by j and drop §;;)
a,o,—aoa b, =0

nivij pUpivji
. . . o al to
However, a,; = a,,;, since the principal stress lies in the direction of the norm
the oblique plane, so
(o ;= 65

918 =0 (2-32)
Expanding Eq. (2-32) will give the three equations (2-13), ann.n apy = N,.ai.u m,
etc., and §,; = 0 when j # i. For Eq. Am-umM to have a EE:.EE_ solution in a,;
the determinant of the coefficients must vanish, resulting in

g, — Q\ Txy Txz

— =| T g, 0 Ty: =0
lo;; — 0,9 yx y °p y

Tox \_.N& o, — Q«.

which yields the cubic equation Eq. (2-14). The coefficients of this equation in
tensor notation are

I =g

L= w?_.»qt . a...éiv

~ I ..2
I = 120,004 = 30,90k + 0,9,%)

The fact that only dummy subscripts appear in these equations indicates the
scalar nature of the invariants of the stress tensor.

27 MOHR’S CIRCLE—THREE DIMENSIONS

The discussion given in Sec. 2-4 of the representation of a Zc..&aaaacnm_ state
of stress by means of Mohr's circle can be extended to three dimensions. Figure
710 shows how a triaxial state of stress, defined by the three principal stresses,



MECHANICAL FUNDAMENTALS

%

ure 2-10 Mohr’s circle representation of a three-dimensional state of stress.

1 be represented by three Mohr’s circles. It can be shown! that all possible
ess conditions within the body fall within the shaded area between the circles in
1. 2-10.

While the only physical significance of Mohr's circle is that it gives a
»metrical representation of the equations that express the transformation of
esy’ components to different sets of axes, it is a very convenient way
visualizing the state of stress. Figure 2-11 shows Mohr’s circle for a number of
nmon states of stress, Note that the application of a tensile stress o, at right
sles to an existing tensile stress o, (Fig. 2-11¢) results in a decrease in the
ncipal shear stress on two of the three sets of planes on which a principal shear
2ss acts. However, the maximum shear stress is not decreased from what it
pild be for uniaxial tension, although if only the two-dimensional Mohr’s circle
1 been used, this would not have been apparent. If a tensile stress is applied in

third principal direction (Fig. 2-11d), the maximum shear stress is reduced
»reciably. For the limiting case of equal triaxial tension (hydrostatic tension)
»hr's circle reduces to a point, and there are no shear stresses acting on any
ne in the body, The effectiveness of biaxial- and triaxial-tension stresses in
ucing the shear stresses results in a considerable decreass in the ductility of the
terial, because plastic deformation is produced by shear stresses. Thus, brittle
“ture is invariably associated with triaxial stresses developed at a notch or
:ss raiser. However, Fig, 2-11e shows that, if compressive stresses are applied
wral to a tensile stress, the maximum shear stress is larger than for the case of
ler uniaxial tension or compression. Because of the high value of shear stress
uive to the applied tensile stress the material has an excellent opportunity to

A. Nadai, “Theory of Flow and Fracture of Solids,” 2d ed., pp. 96-98, McGraw-Hill Book
1pany, New York, 1950.
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Figure 2-11 Mohr's circles (three-dimensional) for various states of stress. (a) .C&E:.u_ .ﬁmnwmosw
(b) uniaxial compression; (¢) biaxial tension; (d) triaxial tension (unequal); (¢) uniaxial tension plus
biaxial compression.

deform plastically without fracturing under this state of stress. Important use is
made of this fact in the plastic working of metals. For example, greater ductility 1s
obtained in extrusion through a die than in simple uniaxial tension because the
reaction of the metal with the die will produce lateral compressive stresses.

2-8 DESCRIPTION OF STRAIN AT A POINT

The displacement of points in a continuum may result from rigid-body transla-
tion, rotation, and deformation. The deformation of a solid may be made up of
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igure 2-12 Displacement of point Q. Fig. 2-13 One-dimensional strain.

ilatation, change in volume, or distortion, change in shape. Situations involving
-anslation and rotation are usnally treated in the branch of mechanics called
ynamics. Small deformations are the province of elasticity theory, while larger
eformations are treated in the disciplines of plasticity and hydrodynamics. The
quations developed in this section are basically geometrical, so that they apply to
Il types of continuous media.

Consider a solid body in fixed coordinates, x, y, z (Fig. 2-12). Let a combina-

on of deformation and movement displace point Q to Q' with new coordinates
+ u, y + v, z + w. The components of the displacement are u, v, w. The dis-
lacement of Q is the vector u, = f(u,v,w). If the displacement vector is
onstant for all particles in the body then there is no strain. However, in general,
; 1s different from particle to particle so that displacement is a function of
istance, u; = f(x,). For elastic solids and small displacements, u; is a linear
mction of x;, homogeneous displacements, and the displacement equations are
near. However, for other materials the displacement may not be linear with
istance, which leads to cumbersome mathematical relationships.

To start our discussion of strain, consider a simple one-dimensional case (Fig.
-13). In the undeformed state points 4 and B are separated by a distance dx.
/hen a force is applied in the x direction A4 moves to A’ and B moves to B".
ince displacement », in this one-dimensional case, is a function of x, B is
isplaced slightly more than A since it is further from the fixed end. The normal
Tain is given by

.

du
AL AB' —4B P+ dx—dx 4 e
= L AB B dx e (2:33)

For this one-dimensional case, the displacement is given by u = e x. To
>neralize this to three dimensions, each of the components of the displacement
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A T g g Figure 2-14 Angular distortion of an clement.

will be linearly related to each of the three initial coordinates of the point.
u=-e. x+ ey +e..z
v=e,xte,yte.z

(2-34)

w=-e,x+ e,y +e,,2
or u, =e x; (2-35)

1 i
The coefficients relating displacement with the coordinates of the point in the
body are the components of the relative displacement tensor. Three of these terms
can be identified readily as the normal strains,
du dv aw
xx".%|k ch_ﬂa N..N"ﬂ
However, the other six coefficients require further scrutiny.
Consider an element in the xy plane which has been distorted by shearing
stresses (Fig. 2-14). The element has undergone angular &mﬁo_.ao.:. The displace-
ment of points along the line 4D is parallel to the x axis, but this component of
displacement increases in proportion to the distance out along the y axis. Thus,
referring to Eq. (2-34)

e (2-36)

’ % !
T - LN (2-37)
DA dy
Similarly, for the angular distortion of the x axis
BB dv
ms—i = \A|w = m s Awuwmv

These shear displacements are positive when they rotate a line from one positive
axis towards another positive axis. By similar methods the rest of the components
of the displacement tensor can be seen to be

du du du
ax Oy dz
Gax Cxy Cxrl gy Gp o
€. = ch« N\_C. mwﬂ v |W - - AN|w0v
Y e,. e. e, dx  dy dz
v ) dw  dw  dw
alded; = &
] T
e o~ L“H dw — s ],
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In general, displacement components such as €., €, etc., produce both
shear strain and rigid-body rotation. Figure 2-15 illustrates several cases. Since we
need to identify that part of the displacement that results in strain, it is important
to break the displacement tensor into a strain contribution and a rotational
contribution. Fortunately, a basic postulate of tensor theory states that any
second-rank tensor can be decomposed into a symmetric tensor and an antisym-
metric (skew-symmetric) tensor.

€= wAm:. + m.:v + WANC - m\.‘v AN.AOV
or e;=g;+ w, (2-41)
1(du;, du; .
where g,;==| 73—+ 7—| andiscalled the strain tensor
72 dx;  dx,
1[du, 3u
w;;=—|—=—— == andis called the rotation tensor
72\ dx;, 9x
du 1/{ du P dv 1/ du B aw
dx 21dy dx MAM x
£ E 13
m: mé mt 1{ du N v Jv 1{dv ow
= x z|=| =] — - B - —+ —
Fis mwx MH MN 213y  dx dy 2\ dz 9y
1/0u dw 1{dc dw aw
2449z ox 2\dz ady az
(2-42)
0 1/du dv 1({du ow
219y ax] 219z ax
Wy x Ek& Wy
© © © 1/dv Jdu 0 1{dv dw
w;. = X z|l=|—] — — — e ———
Y ew« sw. sw.n 21 dx dy 219z ady
1/dw Odu 1{dw dv 0
2\dx 0z 2\dy 0z
(2-43)

Note that g, is a symmetric tensor since ¢, = ¢, that is, ¢,, = ¢, etc. w;; is an
antisymmetric tensor since w;; = —w;, that 15, w,, = —w . If «;=0, the
deformation is said to be irrotational.

By substituting Eq. (2-41) into Eq. (2-35), we get the general displacement
equations

;=% + wx; (2-44)

Earlier in Sec. 1-9 the shear strain y was defined as the total angular change
from a right angle. Referring to Fig. 2-15a, v =e,, + ¢, =¢,, +¢, = 2e,,.

-
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Figure 2-15 Some examples of displacement with shear and rotation. (a) Pure shear without rotation;
(b) pure rotation without shear; (¢) simple shear. Simple shear involves a shape change produced by
displacements along a single set of parallel planes. Pure shear involves a shape change produced by
equal shear displacements on two sets of perpendicular planes.

This definition of shear strain, v,; = 2¢, , is called the engineering shear strain.

du dv

Yo =5 Y
dw  du

i S ® 4
dw  dv

Tl

This definition of shear strain commonly is used in engineering elasticity. How-
ever, the shear strain defined according to Eq. (2-45) is not a tensor quantity.

Because of the obvious advantages in the transformation of tensors by the
methods discussed in Sec. 2-6, it is profitable to use the strain tensor as defined by
Eq. (2-42). Since the strain tensor is a second-rank tensor, it has all of the
properties that have been described earlier for stress. Thus, the strain tensor may
be transformed from one set of coordinate axes to a new system of axes by

Eir = Aya,)E; (2-46)

For simplicity, equations for strain analogous with those for stress can be written
directly by substituting ¢ for ¢ and y/2 for 7. Thus, the normal strain on an
oblique plane is given by

e=el’+em’+en’+y, Im+y, mn+y,in

[Compare the above with Eq. (2-18).]

In complete analogy with stress, it is possible to define a system of coordinate
axes along which there are no shear strains. These axes are the principal strain
axes. For an isotropic body the direction of principal strains coincide with
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principal stress directions." An elemient oriented along one of the principal strain
axes will undergo pure extension or contraction without any rotation or shear
strain. The three principal strains are the roots of the cubic equation

E~Led+Le—1,=0 (2-47)
where I =¢ +e,+e
I, = £.E, + €, + g6, — WA«\NW ar .«me + <.<~Nv

— 2
Nu - mkm&mn + W.%&k%uk%kn - wAmkvx&N + mv..wmwk + mN.fw&v

The directions of the principal strains are obtained from the three equations
analogous to Eqgs. (2-13)

I

0
0

(e, — ) + my,, + ny,,

Iy, + 2m(e, — €) + nv,,

I, + my, +2n(e,—€) =0
Continuing the analogy between stress and strain equations, the equation for the
principal shearing strains can be obtained from Eq. (2-20).
Y1 =& T &
.K—.:Nx = <M . MH - mu ANlA.WV
V3= 6 T &

In general, the deformation of a solid involves a combination of volume
change and change in shape. Therefore, we need a way to determine how much of
the deformation is due to these contributions. The volume strain, or cubical
dilatation, is the change in volume per unit volume. Consider a rectangular
parallelepiped with edges dx, dy, dz. The volume in the strained condition is

(1 + €)1+ e)1 +e,)dxdydz, since only normal strains result in volume
change. The volume strain A is

(I +e)(Q +e)(1 +e,)dedydz — dxdydz
dxdydz
1+ mxvﬁ + mLAH +¢,)—1

D"

f

which for small strains, after neglecting the products of strains, becomes
A=e, +e, +e, (2-49)
Note that the volume strain is equal to the first invariant of the strain tensor,

A=e +e, +e,=¢ +6+e, ‘We can also define (e, + ¢, +¢,)/3 as the
mean strain or the hydrostatic (spherical) component of strain.

=5 (2-50)

£ =

e, te, te g, A
" 3 3

! For a derivation of this point see C. T. Wang, “Applied Elaslicity,” pp. 26-27, McGraw-Hill
Book Company, New York, 1953.

Loy '"H‘w‘

O Ly e ———
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That part of the strain tensor which is involved in shape change rather than
volume change is called the strain deviator & e To obtain the deviatoric strains, we
simply subtract ¢, from each of the normal strain components. Thus,

w m.¥< m‘ﬂu
2e,. —€,— ¢
_ ¥ z x -
= € —— £, (2-51)

The division of the total strain tensor into deviatoric and dilatational strains is
given in tensor notation by

> D
mC"m:.fmsﬂ mCIWmC +Mmc AN-MMV
For example, when ¢;; are the principal strains, (i = j), the strain deviators are
€], = €] — €,,, € = Exy — E,,, €33 = €33 — ¢,,. These strains represent elonga-
tions or contractions along the principal axes that change the shape of the body at

constant volume.

2-9 MOHR’S CIRCLE OF STRAIN

Except in a few cases involving contact stresses, it is not possible to measure
stress directly. Therefore, experimental measurements of stress are actually based
on measured strains and are converted to stresses by means of Hooke’s law and
the more general relationships which are given in Sec. 2-11. The most universal
strain-measuring device is the bonded-wire resistance gage, frequently called the
SR-4 strain gage.! These gages are made up of several loops of fine wire or foil of
special composition, which are bonded to the surface of the body to be studied.
When the body is deformed, the wires in the gage are strained and their electrical
resistance is altered. The change in resistance, which is proportional to strain, can
be accurately determined with a simple Wheatstone-bridge circuit. The high
sensitivity, stability, comparative ruggedness, and ease of application make resis-
tance strain gages a very powerful tool for strain determination.

! For a treatment of strain gages and other techniques of experimental stress analysis see J. W,
Dalty, and W. F. Riley, “Experimental Stress Analysis,” 2d ed., McGraw-Hill Book Company, New
York, 1978.
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e Figure 2-16 Typical strain-gage
(a) (5) rosettes. (a) Rectangular; (5) delta.

For practical problems of experimental stress analysis if is often important to
determine the principal stresses. If the principal directions are known, gages can
be oriented in these directions and the principal stresses determined quite readily.
In the general case the direction of the principal strains will not be known, so that
it will be necessary to determine the orientation and magnitude of the principal
strains from the measured strains in arbitrary directions. Because no stress can act
perpendicular to a free surface, strain-gage measurements involve a 2<0-&Bo=.-
sional state of stress. The state of strain is completely determined if ¢, ¢,, and
Y., can be measured. However, strain gages can make only direct SmaEmm of
linear strain, while shear strains must be determined indirectly. Therefore, it is the
usual practice to use three strain gages separated at fixed angles in the form of a
“rosette,” as in Fig. 2-16. Strain-gage readings at three values of 6 will give three
simultaneous equations similar to Eq. (2-53) which can be solved for ¢,, ¢,, and
Y,y The two-dimensional version of Eq. (2-47) can then be used to determine the
principal strains.

€9 = £,08> 0 + ¢, sin’ § + v, sin 0 cos @ (2-53)

A more convenient method of determining the principal strains from strain-
gage readings than the solution of three simultaneous equations in three un-
knowns is the use of Mohr’s circle. In constructing a Mohr’s circle representation
of strain, values of linear normal strain e are plotted along the x axis, and the
shear strain divided by 2 is plotted along the y axis. Figure 2-17 shows the Mohr’s
circle construction' for the generalized strain-gage rosette illustrated at the top of
the figure. Strain-gage readings ¢, €,, and ¢, are available for three gages situated
at arbitrary angles a and 8. The objective is to determine the magnitude and
orientation of the principal strains ¢; and e,.

1. Along an arbitrary axis X’X" lay off vertical lines aa, bb, and cc correspond-
ing to the strains ¢,, ¢,, and «,.

2. From any point on the line b (middle strain gage) draw a line DA at an
angle « with bb and intersecting ga at point A. In the same way, lay off DC
intersecting cc at point C.

! G. Murphy, J. Appl. Mech., vol. 12, p. A209, 1945; F. A. McClintock, Proc. Soc. Exp. Stress
Anal., vol. 9, p. 209, 1951.

b —
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g Figure 2-17 Mohr’s circle for de-
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3. Construct a circle through 4, C, and D. The center of this circle is at 0,
determined by the intersection of the perpendicular bisectors to CD and A4D.

4. Points 4, B, and C on the circle give the values of ¢ and y/2 (measured from
the new x axis through O) for the three gages.

5. Values of the principal strains are determined by the intersection of the circle
with the new x axis through O. The angular relationship of g, to the gage a is
one-half the angle AOP on the Mohr’s circle (40P = 26).

2-10 HYDROSTATIC AND DEVIATOR COMPONENTS OF STRESS

Having introduced the concept that the strain tensor can be divided into a
hydrostatic or mean strain and a strain deviator, it is important to consider the
physical significance of a similar operation on the stress tensor. The total stress
tensor can be divided into a hydrostatic or mean stress tensor o,,, which involves
only pure tension or compression, and a deviator stress Ez,@w a/;, which repre-
sents the shear stresses in the total state of stress (Fig. 2-18). In direct analogy
with the situation for strain, the hydrostatic component of the stress tensor
produces only elastic volume changes and does not cause plastic deformation.
Experiment shows that the yield stress of metals is independent of hydrostatic
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Tolat stress = Hydrostatic stress + Stress deviator

Figure 2-18 Resolution of total stress into hydrostatic stress and stress deviator.

stress, although the fracture strain is strongly influenced by hydrostatic stress.
Because the stress deviator involves the shearing stresses, it is important in
causing plastic deformation. In Chap. 3 we shall see that the stress deviator is
useful in formulating theories of yielding.

The hydrostatic or mean stress is given by

qilak+o.<+q.. o, +0; + 0y

= = 2-54
Q:— w u u A v
The decomposition of the stress tensor is given by
0;; = 0/; + 36,04 (2-55)
Therefore,
o/, =0, 0,95, . (2-56)
20, - a,— 0,
3 ﬁC. Txz
20,—0,— ¢
- y z x
Q...\ - _ﬂ\ck 3 q.\ﬁ ANlm\Nv
20,—0,— 0
Tzx q.nw *

It can be seen readily that the stress deviator involves shear stresses. For example,
referring o/; to a system of principal axes,

NQ_IQNIQWH (0, = 0;) + (0, — 03)
3 3
, NAQHIQN QHIQNV

0, == +

3 2 2

where 7, and =, are principal shearing stresses.

3 2
= M?.u +7) (2-58)
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Since o/; is a second-rank tensor, it has principal axes. The principal values of

the stress deviator are the roots of the cubic equation®
(') = J(a’) =o' = J; =0 (2-59)

where Ji, J,, J; are the invariants of the deviator stress tensor. J; is the sum of
the principal terms in the diagonal of the matrix of components of o/.

Jy=(o,—0,)+(0,—0,) + (o, 6,)=0 (2-60)

J, can be obtained from the sum of the principal minors of o/}
2

— 2 2 2 et oty ’
.\NI,_.C+4§+4§ /0, — 0jo;, — 005

= 1[(o,— 0,)" + (0, = 0,)* + (0, = 0,)" + 6(r2, + 72 + 72 )] (2:61)

The third invariant J; is the determinant of Eq. (2-57).

2-11 ELASTIC STRESS-STRAIN RELATIONS

Up till now our discussion of stress and strain has been perfectly general and
applicable to any continuum. Now, if we want to relate the stress tensor with the
strain tensor, we must introduce the properties of the material. Equations of this
nature are called constitutive equations. In this chapter we shall consider only
constitutive equations for elastic solids. Moreover, initially we shall only consider
isotropic elastic solids.

In Chap. 1 we saw that elastic stress is linearly related to elastic strain by
means of the modulus of elasticity (Hooke’s law).

o, = Ee, (2-62)

where E is the modulus of elasticity in tension or compression. While a tensile
force in the x direction produces an extension along that axis, it also produces a
contraction in the transverse y and z directions. The transverse strain has been
found by experience to be a constant fraction of the strain in the longitudinal
direction. This is known as Poisson’s ratio, denoted by the symbol ».
va,

ey =& = —vE= = (2-63)
Only the absolute value of v is used in calculations. For most metals the values®
of v are close to 0.33. .

To develop the stress-strain relations for a three-dimensional state of stress,
consider a unit cube subjected to normal stresses o,, 0,, 0, and shearing stresses
Tey» Tyzr Tex- Because the elastic stresses are small and the material is isotropic, we
can assume that normal stress o, does not produce shear strain on the x, y, or z

planes and that a shear stress 7, , does not produce normal strains on the x, y, or

! Note that we use a negative sign for the coefficient of ¢’. Compare with Eq. (2-14).
2 W. Koster and H. Franz, Merall. Rev., vol. 6, pp. 1-55, 1961.
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z planes. We can then apply the principle of superposition to determine the
strain produced by more than one stress component. mo_. oxm:ﬁ_p the stress o,

produces a normal strain ¢, and two transverse strains e, = —ve, and €, = —Ve,.
Thus,
Strain in the Strain in the Strain in the
Stress x direction y direction z direction
o, va, Vo,
o “~% & T % s
- =% -
% Ex E E £ g
vo, vo, o,
o &=~ ¥=~"fF %7%

By superposition of the components of strain in the x, y, and z directions

m
Il

1
» .m—qk - (0, + ouv_

1 .
g, = M—Q& —»(a, + nav_ (2-64)

£,

1 :
M—a« — (e, + QL_
The shearing stresses acting on the unit cube produce shearing strains.
. Q.*k.v q..v.n = Q.Kv.u Tez = Q*kn ANuQMv

The proportionality constant G is the modulus of elasticity in shear, or the
modulus of rigidity. Values of G are usually determined from a torsion test.
We have seen that the stress-strain equations for an isotropic elastic solid

involve three constants, E; G, and ». Typical values of these constants for a -

number of metals are given in Table 2-1.

Still another elastic constant is the bulk modulus or the volumetric modulus of
elasticity K. The bulk modulus is the ratio of the hydrostatic pressure to the
dilatation that it produces

¢, -—p 1
K A A 3 | (2-66)
where —p is the hydrostatic pressure and 8 is the compressibility.

Many useful relationships may be derived between the elastic constants
E, G, v, K. For example, if we add up the three equations (2-64),

1 y 2y
mx+me+mnﬂ|m.||?x+$+a~v

! The principle of superposition states that two strains may be combined by direct superposition.
The order of application has no effect on the final strain of the body.

——
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Table 2-1 Typical room-temperature values of elastic constants for
isotropic materials

Modulus of Shear

elasticity, modulus, Poisson’s
Material GPa GPa ratio
Aluminum alloys 724 215 0.31
Copper 110 414 0.33
Steel (plain carbon and low-alloy) 200 75.8 0.33
Stainless steel (18-8) 193 65.6 0.28
Titanium 117 4.8 0.31
Tungsten 400 157 0.27

The term on the left is the volume strain A, and the term on the right is 3a,,.

% e unu
- E Oy

Vgl £ (2-67)
or A 3(1-2w)

Another important relationship is the expression relating E, G, and ». This
equation is usually developed in a first course in strength of materials.!

; E
- G= i AN-mmv

Many other relationships can be developed between these four isotropic elastic
constants. For example,

; 9K 1-2G/3K
S1+3K/6 | 2+26G/3K
3(1 - 29)K E
G= K=
201 + ») 9 - 3E/G

Equations (2-64) and (2-65) may be expressed succinctly in tensor notation

1+ v
0;; — =00

ij E ij E ij AN-aov

! For a geometric development see D. C. Drucker, “Introduction to Mechanics of Deformable
Solids,” pp. 64-65, McGraw-Hill Book Company, New York, 1967. For a derivation based on
isotropy and fransformation of axes see Chou and Pagano, op. cit., pp. 58-59.
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For example, if i = j = x,
1+v»
XX m

14
Oex — MA@Q to,+ a,.)(1)

1
M,.T-xx . -AQE. + azv_
Ifi=xand j=y,

where

2-12 CALCULATION OF STRESSES FROM ELASTIC mﬂ.,?ﬁZm

Since for small elastic strains there is no coupling between the expressions for
normal stress and strain and the equations for shear stress and shear strain, it is

possible to invert Eqs. (2-64) and (2-65) to solve for st i i
e B, (3.6 ) ress in terms of strain,

E
Qa+a‘=+ouuwllw?a+m.<.._.mnv (2-70)
1+» vy
€= 50~ MAQx +o0,+a,) (2-11)
Substitution of Eq. (2-70) into Eq. (2-71) gives
o = £ e, + 4 (
Tt A a <) e, +e,+e,) (2-12)
or in tensor notation
E vE
Kl H, 1+ _\.w:. * Q+»)Q-20) edyy (2-73)

Upon expansion, Eq. (2-73) gives three equations for normal stress and six

wnc.waoam for shear stress. Equation (2-72) is often written in a briefer form by
etting

vE
(1+»)1-20)
and noting that A = ¢, + ¢, + &,.
o, =2Ge, + AA (2-74)
The stresses and the strains can be broken into:deviator and hydrostatic

oo:_%onga. The deviatoric response (distortion) is related to the stress devia-
tor by

=\ Lamé’s constant

E
o/, = T =m.\....ﬂ 2G¢;;

(2-75)
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while the relationship between hydrostatic stress and mean strain is
E
0, =T———F€
1-2»

For a case of plane stress (o, = 0), two simple and useful equations relating
stress to strain may be obtained by solving simultaneously two of the equations of

(2-64).

(2-76)

ki = IKegy

E
o, = H|l|=mAm~ + ve,)

E e+ ve)
o, = ——(& + rve
2 1- EN 2 1
A situation of plane stress exists typically in a thin sheet loaded in the plane of
the sheet or a thin-wall tube loaded by internal pressure where there is no stress
normal to a free surface. ’

Another important situation is plane strain (&; = 0), which occurs typically
when one dimension is much greater than the other two, as in a long rod or a
cylinder with restrained ends. Some type of physical restraint exists to limit the
strain in one direction, so

(2-77)

1
& m—au ~»(o;+0,)] =0

but o, =v(o, + ;)
Therefore, a stress exists even though the strain is zero. Substituting this value
into Eq. (2-64), we get

= £[0 = #2014 )on)

g = .M_I—AH — )0, — »(1 + v)oy] (2-78)

S g, =0

..ﬁquu_u Strain-gage measurements made on the free surface of a steel plate
_.x_. indicate that the principal strains are 0.004 and 0.001. What are the principal
-~ stresses?

Since this is a condition of plane stress, Eqs. (2-77) apply. From Table
2-1, E =200 GPa and v = 0.33.

ul e 0.004 + 0.33(0.001
QH|H|I|-.I~A&+§~VI_IO.5@A. +0.33(0.001)}
200
= ——(0.004 + 0.0003) = 0.965 GPa = 965 MPa
0.891
E 200
0, = H|I|e~?u + vg) = aebs + 0.0013) = 0.516 GPa
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7._08 the error .::: would result if the principal stresses were computed by
simply multiplying Young’s modulus by the strain.

o, = Ee, = 200(0.004) = 800 MPa incorrect
0, = Ee; = 200(0.001) = 200 MPa incorrect

2-13 STRAIN ENERGY

Hrn elastic strain energy U is the energy expended by the action of external forces
in deforming an elastic body. Essentially all the work performed during elastic
deformation is stored as elastic energy, and this energy is recovered on the release
o.m the applied forces. Energy (or work) is equal to a force multiplied by the
distance over which it acts: In the deformation of an elastic body, the force and
.aomonsmzo: increase linearly from initial values of zero so that the average energy
is equal to one-half of their product. This is also equal to.the area under the
load-deformation curve.
U=3Ps

For an n._oEaEm_ cube that is subjected to only a tensile stress along the x axis,
the elastic strain energy is given by .

dU = 1Pdu = (o,A4)(e, dx)
= WAQ&M‘«VA; &Rv AM:.N@V

mp:ﬂ.woc (2-79) describes the total elastic energy absorbed by the element. Since
Adx is the volume of the element, the strain energy per unit volume or strain
energy density Uj, is given by

Y (2-80)

Note Eﬁ.ﬂro lateral strains which accompany deformation in simple tension do
rot enter into the expression for strain energy because forces do not exist in the
direction of the lateral strains.

By the same type of reasoning, the strain energy per unit volume of an
element subjected to pure shear is given by 4

1 172 1
=_ =_ X __
N\o 2 x&.%kv. 2 G N N.S«N&Q . ANuw“_,v

The a_»m.ao strain energy for a general three-dimensional stress distribution
may be obtained by superposition.

Up = 3(0c8x + 08, + 0,8, + 77, + To¥as + 7,07, (2-82)

or in tensor notation
U = wocm:. . (2-83)
Substituting the equations of Hooke’s law [Eqs. (2-64) and (2-65)] for the strains
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in Eq. (2-82) results in an expression for strain energy per unit volume expressed
solely in terms of the stress and the elastic constants

1

%b=17g

v
AQM + Qm + va _ m?aow + o0, + 0,0,)

1
+ —
2G
Also, by substituting Egs. (2-74) into Eq. (2-82), the stresses are eliminated, and
the strain energy is expressed in terms of strains and the elastic constants
Uy = 1AA2 + Q?w+ € + me +wQASwv+ «m~+§wv (2-85)
It is interesting to note that the derivative of U, with respect to any strain
component gives the corresponding stress component. For example,
Uy
de,
In the same way, dU,/de, = ¢,. Methods of calculation using strain energy to
arrive at stresses and strains are powerful tools in elasticity analysis. Some of the

better known techniques are Castigliano’s theorem, the theorem of least work,
and the principal of virtual work.

TM.. + 172 + dwv (2-84)

=AA + 2Ge, = o, (2-86)

2-14 ANISOTROPY OF ELASTIC BEHAVIOR

Up to this point we have considered elastic behavior from a simple phenomeno-
logical point of view, ie., Hooke’s law was presented as a well-established
empirical law and our attention was directed at developing useful relationships
between stress and strain in an isotropic elastic solid. In this section we consider
the fact that the elastic constants of a crystal vary markedly with orientation.
However, first it is important to discuss briefly the nature of the elastic forces
between atoms.

When a force is applied to a crystalline solid, it either pulls the atoms apart or
pushes them together. The applied force is resisted by the forces of attraction or
repulsion between the atoms. A convenient way to look at this is with an
energy-distance diagram (Fig. 2-19), which represents the interaction energy
(potential energy) between two atoms as they are separated by a distance a. When
the external force is zero, the atoms are separated by a distance equal to the
equilibrium spacing a = a,. For small applied forces, the atoms will find a new
equilibrium spacing a at which the external and internal forces are balanced. The
displacement of the atom is # = @ — a,,. Since force is the derivative of potential
energy with distance [compare Eq. (2-86)], the force to produce a given equi-
librium displacement is

_ do(w)

P
du

(2-87)
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Figure 2-19 Interaction energy vs. separation between
Fdp>1 atoms

where ¢(u) is the interaction bond energy at a displacement u. Thus, the force on
a bond is a function of displacement u. For each displacement there is a
characteristic value of force P(u). Moreover, the deformation of the bonds
between atoms is reversible. When the displacement returns to some initial value
u, after being extended to u, the force returns to its previous value P(u,).

In an elastic solid the bond energy is a continuous function of displacement.!
Thus, we can express ¢(u) as a Taylor series

de 1{d%

o(u) =90+ | 4 J T2\ a? ],

ul o (2-88)

where ¢, is the energy at ¥ = 0 and the differential coefficients are measured at

u = 0. Since the force is zero when a = a,, d¢/du = 0

1({d%
o(u) =+ 5| —3 o%
(2-89)
de(u) (d%
ol du | du? o=

The coefficient (d%/du?), is the curvature of the energy-distance curve at
u = a,. Since it is independent of u, the coefficient is a constant, and Eq. (2-89) is
equivalent to P = ku, which is Hooke’s law in its original form. When Eq. (2-89)
is expressed in terms of stress and strain, the coefficient is directly proportional to
the elastic constant of the material. It has the same value for both tension and
compression since it is independent of the sign of u. Thus, we have shown that
the elastic constant is determined by the sharpness of curvature of the minimum
in the energy-distance curve. It is therefore a basic property of the material, not
readily changed by heat treatment or defect structure, although it would be
expected to decrease with increasing temperature. Moreover, since the binding
forces will be strongly affected by distance between atoms, the elastic constants
will vary with direction in the crystal lattice.

! This development follows that given by A. H. Cottre}l, “ The Mechanical Properties of Matter,”
pp. 84-85, John Wiley & Soms, Inc., New York, 1964,

TR

=
"

[
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In the generalized case! Hooke’s law may be expressed as
&; = SijkiOki (2-90)

ij i
and
0 = Cijkibus (2-91)

ij i

i:oumm.:»lmEQnuﬂ_uanxnim:%w E.EO:.tmmpvnmh.ﬁmnﬁ%,zm& mc?mn nw:na
just the elastic constants). Both S, ;, and G, are ?EE.HE..% tensor quantities.
If we expanded Eq. (2-90) or (2-91), we would get nine equations, each with nine
terms, 81 constants in all. However, we know that both ¢;; and ¢;; are symmetric
tensors, that is, o;; = oy, which immediately leads to appreciable simplification.
Thus, we can write

&= SiikiOk O &;= SOk

and since S ki%k = Sijudu

oy =0y and S = Sijtk

Also, we could write
£ = Mgiot =€; = _m.&._.tai

ij i
S; ki = rm.\._.t
Therefore, because of the symmetry of the stress and strain tensors, only 36 of the
components of the compliance tensor are independent and distinct terms. The
same is true of the elastic stiffness tensor. . . .
Expanding Eq. (2-91) and taking into account the above relationships gives

equations like

01 = Cinén + Cunen + Cunésy + Cun(2ey) + Ci113(2€13) + Crp(2eyy)

These equations show that, in contrast to the situation for an isotropic elastic
solid, Eq. (2-72), for an anisotropic elastic solid both normal strains and shear

strains are capable of contributing to a normal stress.

1 An excellent text that deals with the anisotropic properties of crystals in tensor notation is J. F.
Nye, “Physical Properties of Crystals,” Oxford University Press, London, Em,___.. For a treatment :._”
anisotropic elasticity see R. F. S. Hearmon, “An Introduction to Applied Anisotropic mrm."_:._ ¥,
Oxford University Press, London, 1961. A fairly concise but complete discussion of crystal n_.n._.mzﬁc, 15
given by S, M. Edelglass, “ Engineering Materials Science,” pp. 277-301, The Ronald Press Company,
New York, 1966.
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In wxvmn&am Eq. (2-90), we express the shearing strains by the more
conventional engineering shear strain y = 2e.

&1 = Sunon + S11220 + S1133033 + 25112300 +281113013 + 28115501,

Y23 = 2633 = 28550,01; + 28555505, + 285333033 +48535305

A.N-Sv

The usual convention for designating components of elastic compliance and
elastic stiffness uses only two subscripts instead of four. This is called the
contracted notation. The subscripts simply denote the row and column in the
matrix of components in which they fall.

011 = Cpey + Cpaep + Cisegy + Cryys + Cis1is + CisTa

_ (2-94)
023 = Catu + Cptyy + Cipeyy + Cag¥ay + Cisvis + Cemy

and

(2-95)

023 = Su0u + Sy + Si3033 + Sau0a; + Sys01; + Sye01,

By comparing coefficients in Egs. (2-92) and (2-94) and Eqs. (2-93) and (2-95) we
note, for example, that

Cap = Cpy Chin=0Cn
Sun=C, 2845,;,=Cy4 485523 = Sus
The elastic stiffness constants are defined by equations like
Agy,
Ch= Mmlz all ¢;; constant except

Unfortunately, a measurement such as this is difficult to do experimentally since

P
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the specimen must be constrained mechanically to prevent strains such as ey, It is
much easier to experimentally determine the coefficients of the elastic compliance

from equations of the type
Ag,

S, =
1 DQ.:

all ¢;; constant except oy,
If the components of S;; have been determined experimentally, then the compo-
nents of C,; can be determined by matrix inversion.

At this stage we have 36 independent constants, but further reduction in the
number of independent constants is possible. By using the relationship given in
Eq. (2-86), we can show that the constants are symmetrical, that is, C;; = C;;. For
example,

au
ﬂ =05, = Cputyy + Craep + Cratay + Cra¥os + Crsvin + Cie712
11
v c
deyy degy e
U
ﬂ =0y = Cyepy + Cpegy + Cpeyy + Cyu¥as + G713 + CaY12
2
U c
deqy deyy it
. U U c c
T ey Feny h de,, degy I

In general, C;; = C;; and S, = S;;. Now, we start with 36 constants C;;, but of
these there are six consants where i = j. This leaves 30 constants where i # j, but
only one-half of these are independent constants since C;; = C;;. Therefore, for
the general anisotropic linear elastic solid there are 30/2 + 6 = 21 independent
elastic constants.

As a result of symmetry conditions found in different crystal structures the
number of independent elastic constants can be reduced still further.

Rotational Number of independent
Crystal structure symumetry elastic constants
Triclinic None 21
Monoclinic 1 twolold rotation 13
Orthorhombic 2 perpendicular twofold rotations 9
Tetragonal 1 fourfold rotation 6
Hexagonal 1 sixfold rotation 5
Cubic 4 threefold rotations 3
Isotropic 2
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Table 2-2 Stiffness and compliance constants for

cubic crystals

Metal Ciy Ciz Cus Syy Si2 Sas
Aluminum 108.2 61.3 28.5 15.7 —5.7 35.1
Copper: - 168.4 121.4 754 149 —6.2 13.3
Iron 237.0 141.0 116.0 8.0 —2.8 8.6
Tungsten 501.0 198.0 1514 2.6 —-0.7 6.6

Stiffness constants in units of GPa.
Compliance constants in units of TPa™?,

For a cubic crystal structure

Chi = S+ S
=
! A,w: - .m.SX,m.: + N,wsv
. I.m.:
Cp, = 2-96
1 A_m: - MSXM: + NMEV A V
c 1
44 = Sus

The modulus of elasticity in any direction of a cubic crystal (described by the
direction cosines /, m, n) is given by

1 1 .
— =81 —2[{(Sy — S) — Mhﬁ (1*m? + m2n? + 1*n?)

m (2:97)

Typical values of elastic constants for cubic metals are given in Table 2-2.

. By comparing the generalized Hooke’s law Eqgs. (2-95) with the equations
using the common technical moduli Eq. (2-64) we can conclude that the elastic
constants for an isotropic material are given by

mmbom S1; and S;, are the independent constants, their relationship to S,, can be
obtained from Eq. (2-68)

E 1 ,
T21+v) 2(1/E +v/E)
6= et I
Saa mﬁ,w: - .wsu
2(S) — S12) (2-98)

Comparable equations relating the elastic stiffness constants can be developed

G

or Sas

el
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from Eqgs. (2-95) and (2-74).
C;, = A Lamé’s constant

Cpy =2G+A (2-99)

Cu= WAGE - QSV

The technical elastic moduli E, », and G are usually measured by direct
static measurements in the tension or torsion tests. However, where more precise
measurements are required or where measurements are required in small single-
crystal specimens cut along specified directions, dynamic techniques using
measurement of frequency or elapsed time are frequently employed. Dynamic
measurements involve very small atomic displacements and low stresses compared
with static modulus measurements. The velocity of propagation of a displacement
down a cylindrical-crystal specimen is given by

oh [ Ex 2-100
%=\ 5 (2-100)
where  is the natural frequency of vibration of a stress pulse of wavelength A in
a crystal of density p. Dynamic techniques consist of measuring either the natural
frequency of vibration or the elapsed time for an ultrasonic pulse to travel down
the specimen and return. Because the strain cycles produced in dynamic testing
occur at high rates, there is very little time for heat transfer to take place. Thus,
dynamic measurements of elastic constants are obtained under adiabatic condi-
tions, while static elastic measurements are obtained under essentially isothermal
conditions. There is a small difference between adiabatic and isothermal elastic
moduli.!
E. .
—— (2-101)
E T~
9¢
where a is the volume coefficient of thermal expansion and c¢ is the specific heat.
Since the specific heat of a solid is large compared to a gas, the difference between
adiabatic and isothermal moduli is not great and can be ignored for practical
purposes.

m.wE =

1

Example Determine the modulus of elasticity for tungsten and iron in the
(111) and (100) directions. What conclusions can be drawn about their
elastic anisotropy? From Table 2-2

Sn S12 Saa
Fe: 8.0 —-28 8.6
w: 2.6 —0.7 6.6

1 For a derivation of Eq. (2-101) see S. M. Edelgass, op. cit.,, pp. 294-297.
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The direction cosines for the chief directions in a cubic lattice are:

Directions { m n
(100) 1 0 0
(110) 1/V2 1/V2 0
(111) 1/V3 1/V3 1/V3
For iron:
1

=80 — 2{(8.0 + 2.8) — W.QEAW + .w. + wv

1 1
——=280—2(108 —43)| ) = 8.0~ 130 5

=80—-43=37TPa!

1
E, = 37 TPa = 270 GPa
1
= 8.0 — 13.0(0) = 8.0 TPa"* Ejo0 = 125 GPa
m.Hoo
For tungsten:
1 6.6]/1
=26 —-29(26 +07) — — =
e A 3 )
1 1 .
=2.6—2{33 — m.mvﬁrv =26TPa?
m:L w
1
m:_. = Q TPa = 385 GPa
1 6.6
=26 — n*n.a +0.7) — —(0) = 2.6 TPa~!
E o0 237 :

~
m "I.l "
100 = 3¢ mewwmﬁww

Therefore, we see that tungsten is elastically isotropic while iron is
elastically anisotropic. g

2-15 STRESS CONCENTRATION

A geometrical discontinuity in a body, such as a hole or a notch, results in a
nonuniform stress distribution at the vicinity of the discontinuity. At some region
near the discontinuity the stress will be higher than the average stress at distances
removed from the discontinuity. Thus, a stress concentration occurs at the
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G i

{a) (6}

Figure 2-20 Stress distributions due to (a) circular hole and () elliptical hole.

discontinuity, or stress raiser. Figure 2-20a shows a plate containing a circular
hole which is subjected to a uniaxial load. If the hole were not present, the stress
would be uniformly distributed over the cross section of the plate and it would be
equal to the load divided by the cross-sectional area of the plate. With the hole
present, the distribution is such that the axial stress reaches a high value at the
edges of the hole and drops off rapidly with distance away from the hole.

The stress concentration is expressed by a theoretical stress-concentration
factor K,. Generally K, is described as the ratio of the maximum stress to the
nominal stress based on the net section, although some workers use a value of
nominal stress based on the entire cross section of the member in a region where
there is no stress concentrator.

Qﬂuwﬂ

K =——- (2-102)
O ominal
In addition to producing a stress concentration, a notch also creates a
localized condition of biaxial or triaxial stress. For example, for the circular hole
in a plate subjected to an axial load, a radial stress is produced as well as a
longitudinal stress. From elastic analysis," the stresses produced in an'infinitely
wide plate containing a circular hole and axially loaded can be expressed as

o a? o a* a?
a,umH|U +MH+wﬂm|AH cos 20
¢ a? ¢ a*
% =7 1 +.~.|N -3 1+ m“ cos26 (2-103)
4 2

"1 -3L 422 \sin26
IMIﬁA+HmE

<
I

! Timoshenko and Goodier, op. cit., pp. 78-81.
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3.4 YIELDING CRITERIA FOR DUCTILE METALS

The problem of deducing mathematical relationships for predicting the conditions
at which plastic yielding begins when a material is subjected to any possible
combination of stresses is an important considzration in the field of plasticity. In
uniaxial loading, as in a tension test, macrosccpic plastic flow begins at the yield
stress g,. It is expected that yielding under a sitnation of combined stresses can be
related to some particular combination of principal stresses. There is at present
no theoretical way of calculating the relationship between the stress components
to correlate yielding for a three-dimensional state of stress with yielding in the
uniaxial tension test.

The yielding criteria are essentially empirical relationships. However, a yield
criterion must be consistent with a number of experimental observations, the chief
of which is that pure hydrostatic pressure does not cause yielding in a continuous
solid." As a result of this, the hydrostatic component of a complex state of stress
does not influence the stress at which yielding occurs. Therefore, we look for the
stress deviator to be involved with yielding. Moreover, for an isotropic material,
the yield criterion must be independent of the choice of axes, i.e., it must be an
invariant function. These considerations lead to the conclusion that the yield
criteria must be some function of the invariants of the stress deviator. At present
there are two generally accepted criteria for predicting the onset of yielding in
ductile metals.

Von Mises’ or Distortion-Energy Criterion

Von Mises (1913) proposed that yielding would occur when the second invariant
of the stress deviator J, exceeded some critical value.

J, = k? (3-10)
where J, = {[(0; — 0,)> + (0; — 63)* + (0, — 7).
To evaluate the constant k and relate it to yielding in the tension test, we
realize that at yielding il uniaxial tension o, = g,, 6, = 6, = 0
of + o = 6k*
0 =1V3k (3-11)

Substituting Eq. (3-11) in Eq. (3-10) results in the usual form of the von Mises’
yield criterion

v

1 - . 172
O = W—AQH - onvu + (o, - QLN + (o5 - QMVN_ ! (3-12)

! A significant influence of hydrostatic or mean stress of modest values on yielding has been
observed in glassy polymers such as PMMA. S. S. Sterns:zein and L. Ongchin, Polym. Prepr. Am.
Chem. Soc. Div. Polym. Chem., September 1969.
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or from Eq. (2-61)

1 2 2 1/2

0y = ._\W—on - QV.VN + AQ& -0) +(o,—0) + oﬁdﬂw + d.w + dm,i (3-13)
Equation (3-12) or (3-13) predicts that yielding will occur when the &:.Qannnw. of
stresses on the right side of the equation exceed the yield stress in uniaxial tension
;-

Example Stress analysis of a spacecraft structural member gives the m::o.&

stress shown below. If the part is made from 7075-T6 aluminum alloy with

0, = 500 MPa, will it exhibit yielding? If not, what is the safety factor?

s, = 50 MPa

W
o, = 100 MPa
L
e % - 30 MPa

o, = 200 MPa
From Eq. (3-13)

1
%= 75 [(200 — 100)* + (100 — (-50)) + (50 — 200)* + 6(30)’]
L 1004002 = 22 _ s mp
i - = B
% 2 (100,400) 2
Since the value of g, calculated from the yield criterion is less than the yield
strength of the aluminum alloy, yielding will not occur. The safety factor is

500,224 = 2.2.

1/2

To identify the constant k¥ in Eq. (3-10), consider the state of stress in pure
shear, as is produced in a torsion test.

0,=—0,=17 0,=0
atyielding o2 + 02 + 402 = 6k*
g, =k
so that k represents the yield stress in pure shear (torsion). Therefore, the von
Mises’ criterion predicts that the yield stress in torsion will be less than in uniaxial

tension according to

1
k= I,\MIQQ = 0.5770, (3-14)
To summarize, note that the von Mises’ yield criterion implies that yielding is
not dependent on any particular normal stress or shear stress, but instead,



78 MECHANICAL FUNDAMENTALS

yielding depends on a function of all three values of principal shearing stress.
Since the yield criterion is based on differences of normal stresses, o, — o,, etc.,
the criterion is independent of the component of hydrostatic stress. Since the von
Mises’ yield criterion involves squared terms, the result is independent of the sign
of the individual stresses. This is an important advantage since it is not necessary
to know which are the largest and smallest principal stresses in order to use this
yield criterion.

Von Mises originally proposed this criterion because of its mathematical
simplicity. Subsequently; other workers have attempted to give it physical mean-
ing. Hencky (1924) showed that Eq. (3-12) was equivalent to assuming that
yielding occurs when the distortion energy reaches a critical value. The distortion
energy is that part of the total strain energy per unit volume that is involved in
change of shape as opposed to a change in volume.

Example The fact that the total strain energy can be - split into a term
depending on change of volume and a term depending on distortion can be
seen by expressing Eq. (2-84) in terms of principal stresses.

1 !
T 2E
or expressing in terms of the invariants of the stress tensor

Uy [of + 6 + 07 = 2v(0,0, + 0,0, + 0,0,)] (3-15)
1 2
U, = m_: - 2L,(1 + »)] (3-16)

This equation is more meaningful if we express it in terms of the bulk
modulus (volume change) and the shear modulus (distortion). From Sec. 2-11,

e 9GK 3K — 2G
T B3K+G 1 VTw6K+ 26
Substituting into Eq. (3-16)
12 1
= — ——— N —_— -
b= %kt G (12 - 31,) (3-17)

Equation (3-17) is important because it shows that the total strain energy can
be split into a term depending on change of volume and a term depending on
distortion.
1
(Uo) distortion = m?m +07 + 0f — 0,0, = 0,0, — QHqu

or

1 2 2 2
(Vo) distortion = g—?ﬂ —0,) +(0,~0;)" + (05~ 0y) _ (3-18)
For a uniaxial state of stress, 6, = 0y, 0, =0, =0
1

Aqavv&u-o_.mou . ||.|NQO~

12G
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or

Oy = WTQH - QNVN + (o, - qun + Aau - quw_H\N (3-19)
2
Another physical interpretation given to the von Mises’ yield criterion is
that it represents the critical value of the octahedral shear stress (see Sec. 3-9).
This is the shear stress on the octahedral planes which make equal angles with
the principal axes. Still another interpretation is that it represents the mean
square of the shear stress averaged over all orientations in the solid.!

Maximum-Shear-Stress or Tresca Criterion

This vield criterion assumes that yielding occurs when the maximum shear stress
reaches the value of the shear stress in the uniaxial-tension test. From Eq. (2-21),
the maximum shear stress is given by
g, — 0O
T = (3-20)
2

where o, is the algebraically largest and o, is the algebraically smallest principal
stress.

For uniaxial tension, 0, = 0y, 0, = 03 = 0, and the shearing yield stress 7, is
equal to o,/2. Substituting in Eq. (3-20),

0,0 %
Tmax — ||N| =T = M
Therefore, the maximum-shear-stress criterion is given by
0, — 03 =0, (3-21)
For a state of pure shear, 0, = —o0; = k, 0, = 0, the maximum-shear-stress

criterion predicts that yielding will occur when
0, —0y=2k =g,
9

k==
or D)

so that the maximum-shear-stress criterion may be written
0, —6,=0]—0]=2k (3-22)

We note that the maximum-shear-stress criterion is less complicated mathe-
matically than the von Mises’ criterion, and for this reason it is often used in
engineering design. However, the maximum-shear criterion does not take into
consideration the intermediate principal stress. It suffers from the major difficulty
that it is necessary to know in advance which are the maximum and minimum
principal stresses. Moreover, the general form of the maximum-shear-stress cri-
terion, Eq. (3-23), is far more complicated than the von Mises’ criterion, Eq.

! See G. Sines, “Elasticity and Strength,” pp. 54-56, Allyn and Bacon, Inc., Boston, 1969.
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(3-10), and for this reason the von Mises’ criterion is preferred in most theoretical
work.

413 — 212 — 36k22 + 96k*), — 64kS =0 (3-23)

Example Use the maximum-shear-stress criterion to establish whether yield-
ing will occur for the stress state shown in the previous example.

g, — 0, Oy
T
200 — (—50) = o,
o, = 250 MPa
Again, the calculated value of g, is less than the yield strength of the

material.

3-5 COMBINED STRESS TESTS

The conditions for yielding under states of stress other than uniaxial and torsion
loading can be studied conveniently with thin-wall tubes. Axial stress can be
combined with torsion to produce various combinations of shear stress to normal
stress intermediate between the values obtained separately in tension and torsion.
Alternatively, a hydrostatic pressure may be introduced to produce a circumferen-
tial hoop stress in the tube.!

For the stresses shown in Fig. 3-3, from Eq. (2-9) the principal stresses are

2 172
o, o 3
0, = M + M + Tey
0= (3-29)
2 172
B g, Qk 2
0; = Mc = M + Ty

Therefore, the maximum-shear-stress criterion of yielding is given by

Amvn + AAEVN =1 (3-25)

9 )

and the distortion-energy theory of yielding is oxﬁnomm& by

o u T N
=] +3[2] =1 (3-26)
% %

! See for example S. S. Hecker, Metall. Trans., vol. 2, pp. 2077-2086, 1971. A unique method for
determining the yield locus of a flat sheet has been presented by D. Lee and W. A. Backofen, Trans.
Metall. Soc. AIME, vol. 236, pp. 1077-1084, 1966. This method is well suited for studying the
anisotropy of rolled sheet. ‘
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Figure 3-3 Combined tension and torsion in a thin-walled tube.

06 1 T T T
T - Distortion energy

0.5 = ~<J
0.4 ...r/

o “

N of Maximum shear siréss / ./.

SR N

i //
0.2 //
o; /

0 Figure 3-4 Comparison between

0 01 02 03 04 05 06 07 08 09 10 maximum-shear-stress theory and
% /% distortion-energy (von Mises’) theory.

Both equations define an ellipse. Figure 3-4 shows that the experimental results*
agree best with the distortion-energy theory.

3-6 THE YIELD LOCUS

For a biaxial plane-stress condition (o, = 0) the von Mises’ yield criterion can be
expressed mathematically as

o2+ 0} — 0,0, =0f (3-27)

This is the equation of an ellipse whose major semiaxis is y2 0, and whose minor
semiaxis is n%%aa. The plot of Eq. (3-27) is called a yield locus (Fig. 3-5). macnnw_
important points on the yield ellipse corresponding to particular stress-ratio
loading paths are noted on the figure.

The yield locus for the maximum-shear-stress criterion falls inside of the von
Mises’ yield ellipse. Note that the two yielding criteria predict the same yield
stress for conditions of uniaxial stress and balanced biaxial stress (o, = 05). The
greatest divergence between the two criteria occurs for pure shear (o, = —03).
The yield stress predicted by the von Mises’ criterion is 15.5 percent greater than
the yield stress predicted by the maximum-shear-stress criterion.

! G. 1. Taylor and H. Quinney, Proc. R. Soc. London Ser. A., vol. 230A, pp. 323-362, 1931.
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L3 0y = 20
a3 =0
3 Q.o
von Mises \
criterion A
9, = —oy pure
shear
Maximum shear Z
stress criterion Figure 3-5 Comparison of yield crteria for

plane stress.

3-7 ANISOTROPY IN YIELDING

The yielding criteria considered so far assame that the material is isotropic. While
this may be the case at the start of plastic deformation, it certainly is no longer.a
valid assumption after the metal has undergone appreciable plastic deformation.
Moreover, most fabricated metal shapes have anisotropic properties, so that it is
likely that the tubular specimens used for basic studies of yield criteria incorpo-
rate some degree of anisotropy. Certainly the von Mises’ criterion as formulated
in Eq. (3-12) would not be valid for a highly oriented cold-rolled sheet or a
fiber-reinforced composite material.

Hill' has formulated the von Mises’ yield criterion for an anisotropic material
having orthotropic symmetry.

Zx

F(o, — 0,) + G(o, - 0.)* + H(a, — QLN +2L72 + 2M12 + 2NT2 =1

where F,G,..., N are constants defining the degree of anisotropy. For principal
axes of orthotropic symmetry

MAQNIqu~+QAqula_V~+mAquq~v~HH (3-28)

If X is the yield stress in the 1 direction, Y is the yield stress in the 2 direction, Z

wmEoﬁo_amﬁommmngou&Hooaoa,ngww:cm&:a:miﬁo mﬁ_.a-wmvioog
evaluate the constants by ]

1 1 1
Q+mﬂﬂ N.N+~A..HI%<|~ m.+QH.N|~

Lubahn and Felgar? give detailed plasticitv calculations for anisotropic behavior.

! R. Hill, Proc. R. Soc. London, Ser, B, vol. 193, pp. 281-297, 1948

2] D. Lubahn and R. P, Felgar, “Plasticity and Creep of Metals," chap. 13, John Wiley & Sons,
Inc., New York, 1961.
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= Figure 3-6 Yield locus for tex-

N . tured titanium-alloy sheet.

B = = Siress %oﬁwm ] (After D. Lee and W. A. Back-
€=,

L = Ti— 4Al— %0, - ofen, Trans. Metall. Soc.

AIME, vol. 236, p. 1083, 1966.
By permission of the publi-
(| S N (I O [ | shers.)

On a plane-stress yield locus, such as Fig. 3-5, anisotropic ﬁo_n.:bm results in
distortion of the yield ellipse. Figure 3-6 shows the yield _omcm for Emﬁw textured
titanium alloy sheet.! Note that the experimentally determined curve is nonsym-
metric when compared with the ideal isotropic curve. s .

An important aspect of yield anisotropy is texture hardening.® Consider a
highly textured sheet that is fabricated into a thin-wall pressure vessel, so that the
thickness stress o, is negligible. From Eq. (3-28)

Fa} + Gol + EAQW = 20,0, + Qnmv =1

(G+ H)o}+ (F+ H)o} — 2Hop0, =1
0,\?2 0, \? AQH env
e 2 —Z)=1 3-29
. ALLL XN %y (3-29)

For simplicity, we shall assume that the yield stresses in the plane of the sheet are
equal, that is, X = Y. Thus,

02+ o0} —2HY%0, = Y?

1 o 1 %Vu
and QHN...HN'N'n HY* = IN Z

However, the yield stress in the thickness direction of the sheet, Z, is a difficult
property to measure. This problem can be circumvented by measuring the R

1 These curves were obtained with the method of D. Lee and W. A. Backofen, op. cit.
2 W. A. Backofen, W. F. Hosford, Jr., and J. J. Burke, ASM Trans Q., vol. 55, p. No.a_ 1962.
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value, the ratio of the width strain to the thickness strain

R= In (wy/w)
In(ty/t) (3-30)
Since (Z/Y)? = 1(1 + R), the equation or the yield locus can be written as
o2+ 02— hNI =Y?
1 2 1+ xQHQN =Y (3-31)

Iwm: through-thickness yield stress Z results in low-thickness strain and a high
M,N._ ue of R. The extent of strengthening from the texture effect can be seen from
ig. _uw,.o. MMH a spherical pressure vessel o, = g,. Thus, by moving out a 45° line
on Fig. 3-6, we see that th i ielding i i
e ¢ resistance to yielding increases markedly with

3-8 YIELD SURFACE AND NORMALITY

The relationships that have been developed for yield criteria, Egs. (3-12) and
(3-21), can be represented geometrically by a cylinder oriented at equal angles to
50. 9y, 0y, 03 axes (Fig, 3-7). A state of stress which gives a point inside of the
cylinder represents elastic behavior, Yielding begins when the state of stress
Rmn_._n.m. the surface of the cylinder, which is called the yield surface. The radius of
the cylinder MN is the stress deviator. Since the axis of the Ov&:mﬁ. OM make
equal angles with the principal stress axes, I=m=n=1/V3, and from mMm
W-:&. o= (o +0,+0y)/3= e Therefore, the axis of the cylinder is Em
w&.oﬂmnmn component of stress. Since plastic deformation is not influenced b
hydrostatic stress, the generator of the yield surface is a straight line parallel HW
ﬂ%\m%% ME: .H%o zﬂmcm of &m cylinder is constant. As plastic deformation occurs
mooBoaooHMﬁM.n that the yield surface expands outward, maintaining its same
The yield surface shown in Fig. 3-7 is a circular cvli if i
von K._m.am.. vield criterion. If a plane is passed ancm_._%mﬁm MHMMMM wwwwwm“_ﬂw ”MM
0, axis, 1t intersects on the 0,0, plane as an ellipse (see Fig, 3-5). The yield surface

I3

Figure 3-7 Yield surface for von Mises’ criterion.
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(Biaxial tension)

(Uniaxial tension)

Y

-0,

Figure 3-8 Example of the usefulness of the normality rule in working with' the yield locus. Note the
total strain vector de is normal to the yield locus.

for the maximum-shear-stress criterion is a hexagonal cylinder. It should be noted
that although the yield surface is an important concept in plasticity theory, there
is no extensive body of experimental data on the shape of the surface. There is
some work! which indicates that the yield surface is not a cylinder of uniform
radius.
Drucker? has shown that the total plastic strain vector must be normal to the
vield surface. As a consequence, any acceptable yield surface must be convex
about its origin. Because of normality there is no component of the total strain
vector that acts in the direction of o,,. Therefore, the hydrostatic component of
stress does not act to expand the yield surface. Because the deviatoric component
of stress acts in the same direction as the total strain vector their dot product
causes the plastic work as the yield surface is expanded by plastic deformation.
The normality rule also is useful in constructing experimental yield loci.?
Figure 3-8 shows that the total strain vector de is normal to the yield locus. We
are looking at the projection of de on the 1-3 plane. If the yield locus is known we
can establish the ratio de, : de; from the normality rule. In the more usual case,
de,/de, is known experimentally and when combined with the normality condi-

tion they establish part of the yield locus.

L. W. Hu, J. Markowitz, and T. A, Bartush, Exp. Mech. vol. 6, pp. 58-65, 1966.
C. Drucker, Proceedings 1st U.S. National Congress of Applied Mechanics, p. 487, 1951.
.>.w»oro?:.:U&o_d_w:cuw_.onommiw.:_uu.mmlqm.>a&mo=.imm_n<.~w3&nm_mem;qu.

1
2D
3w
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3-9 OCTAHEDRAL SHEAR STRESS AND SHEAR STRAIN

The octahedral stresses are a particular set of stress functions which are important
in the theory of plasticity. They are the stresses acting on the faces of a
three-dimensional octahedron which has the geometric property that the faces of
the planes make equal angles with each of the three principal directions of stress.
For such a geometric body, the angle between the normal to one of the faces and
the nearest principal axis is 54°44’, and the cosine of this angle is 1/ V3. This is
equivalent to {111} plane in an fcc crystal lattice.

The stress acting on each face of the octahedron can be resolved® into a
normal octahedral stress o,, and an octahedral shear stress lying in the oc-
tahedral plane, 7,,. The normal octahedral stress is equal to the hydrostatic
component of the total stress.

o, +0,+0
QOn— = 1{ = QS AWlva

The octahedral shear stress 7., is given by
2 2 2|12
Toct = W—AQH —0) + (0= 0y)" + (0, - 0) _ (3-33)
Since the normal octahedral stress is a hydrostatic stress, it cannot ancoo,
yielding in solid materials. Therefore, the octahedral shear stress is the component
of stress responsible for plastic deformation. In this respect, it is analogous to the
stress deviator.
If it is assumed that a critical octahedral shear stress determines yielding, the
failure criterion can be written as
V2

2 172
Toat = W—An; . an + AQN T qun + AQu — QHVN_ = —0,

3

or [+

{8 (3-34)

1 2 2
W—Aaw —0) + (o, - 0;)" + (05— 0y)
Since Eq. (3-34) is identical with the equation already derived for the distortion-
energy theory, the two yielding: theories give the same results. In a sense, the
octahedral theory can be considered the stress equivalent of the distortion-energy

:._noQ.>onE.m§m.o~EmEmoq_ann,wrmm_.m_mroﬁm:.ommoo_._.omﬁonn:amﬂo
yielding in uniaxial stress is given by :

g '
Toa = "3700 = 0.4710, (3-35)

Octahedral strains are referred to -the same three-dimensional octahedron as
the octahedral stresses. The octahedral linear strain is given by
g t e, + g

Eoct = 3 Awuwmv

' A. Nadai, “ Theory of Flow and Fracture of Solids,” 2d Ed., vol. I, pp. 99-105, McGraw-Hill
Book Co., New York, 1950.
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Octahedral shear strain is given by

Yoot = W—Aﬁ — )+ (e —83)° + (&5 — mHVN_H\N (3-37)

3-10 INVARIANTS OF STRESS AND STRAIN

It is frequently useful to simplify the representation of a ooEEo.x state of stress or
strain by means of invariant functions of stress and strain. If the plastic
stress-strain curve (the flow curve) is plotted in terms of invariants of stress and
strain, approximately the same curve will be obtained regardless .om the state of
stress. For example, the flow curves obtained in a uniaxial-tension test and a
biaxial-torsion test of a thin tube with internal pressure will coincide when the
curves are plotted in terms of invariant stress and strain functions. .

Nadai! has shown that the octahedral shear stress and shear strain are
invariant functions which describe the flow curve independent of the type of test.
However, the most frequently used invariant function to describe plastic deforma-
tion is effective stress @ or effective strain &.

V2

12
7= (o= o) + (0= o) + (03— )] (3-38)
2 1/2
dé = %—A&ﬁ — de,)? + (de, — dey)’ + (de; — &9%_ (3-39)
The above equation for effective strain can be simplified as?
di = [2(de? + dé} + de3)]"” (3-40)

or in terms of total plastic strain
E= m?m + &2 + mwv_—\n (3-41)

The strains used in Egs. (3-39), (3-40), and (3-41) should be the plastic
portion of the total strain. Frequently this is indicated by the noﬁ:.mou el Sromo
el = ¢;(total) — e,(elastic). In dealing with problems in metalworking the elastic
strain is negligible, but in plasticity problems involving strains at a notch,
overstressing of pressure vessels, etc., the elastic strains usually cannot be ignored.

Example Show that the equations for significant stress and strain reduce to
the values for a tensile test.

L A. Nadai, J. Appl. Phys., vol. 8, p. 205, 1937. ) N
2 W, B. Hosford and R. M. Caddell, “Metal Forming: Mechanics and Metallurgy,” pp. 44-46,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1983.
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For a tensile test o, # 0; 0, = 0, = 0, so from Eq. (3-38)

V2 V22

||N|—Q~~+03 = )

= 0, =0

The strains in the tensile test are ¢,; &, = &; # & but from ¢, + &, + &, = 0
g +2e,=0 and de = —2de;, = —2de,

2 v 1,2 3 = de?  de2\ 12
IA&mm+&mw+&mwv =|—|de? + |mw+m_|

de
3 3 4 4

de = [2(%) de2]'* = de,
Thus the power law expression for the flow curve, Eq. (3-1) may be used as a

mnmﬁ. approximation to predict the plastic stress-strain behavior in other than
tensile forms of loading.

o = K&" (3-42)

3-11 PLASTIC STRESS-STRAIN RELATIONS

Having discussed the relationships between stress state and plastic yielding, it is
now necessary to consider the relations between stress and strain in plastic
deformation. In the elastic region the strains are uniquely determined by the
stresses through Hooke’s law without regard to how the stress state was achieved.
This is not the case for plastic deformation. In the plastic region the strains in
mmnﬁu_ are not uniquely determined by the stresses but depend on the entire
E.mSJ. of loading. Therefore, in plasticity it is necessary to determine the
differentials or increments of plastic strain throughout the loading path and then
obtain the total strain by integration or summation, As a simple example,
consider a rod 50 mm long extended in tension to 60 mm and then compressed
to the original 50 mm length.
On the basis of total deformation

60 &H\ 50 &h
e= ._. — 4 .—, ==
so L Jeo L

However, on an incremental basis

60 dL 50 dL
H.—. I|+._. ——=21In12=10365
5 (]
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For the particular class of loading paths in which all the stresses increase in
the same ratio, proportional loading, i.e.,

do, do,

do,

01 0y !

the plastic strains are independent of the loading path and depend only on the

final state of stress.
There are two general categories of plastic stress-strain relationships. Incre-

mental or flow theories telate the stresses to the plastic strain increments.
Deformation or total strain theories relate the stresses to the total plastic strain.
Deformation theory simplifies the solution of plasticity problems, but the plastic
strains in general cannot be considered independent of loading path.

Levy-Mises Equations (Ideal Plastic Solid)

The relationship between stress and strain for an ideal plastic solid, where the
elastic strains are negligible, are called flow rules or the Levy-Mises equations. If
we consider yielding under uniaxial tension, then ¢, # 0, 0, = 0; =0, and
0,, = 0,/3. Since only the deviatoric stresses cause yielding

, 20, , , -0,
QHMQHIaquw 0;=05= 3
from which we find
0] =—20}= —20§ (3-43)

From the condition of constancy of volume in plastic deformation

de, = —2de; = —2de, (3-44)

de oy
so that &|m~ =-2= QIN\ (3-45)

This can be generalized to the Levy-Mises equation

de, de, de

= = =d\ 3-46
o 0 0 (3-46)
These equations express the fact that at any instant of deformation the ratio of
the plastic strain increments to the current deviatoric stresses is constant.
By using Egs. (2-57) the above equations can be written in terms of the actual
stresses.

de, = 3d\ [0, — (o, + 03)], ete.

To evaluate dA we utilize the effective strain, Eq. (3-39), which yields d&e = 2dA .
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strain
increments Figure 3-9 Method of establishing d&/d in Eq. (3-47).

The Levy-Mises equations then become

de [ ; 1

de, = = .3 - MAQN + qu.
de| 1 1-

&mm = ﬂ .Q~ - MAQu + Q-v Awuhﬂv
de[ ]

de; = = .Qu - .MAQ_ + QNV.

The similarity with Eqgs. (2-64) for the elastic solid should be noted. In place of
1/E the flow rules have a ratio de/o which changes throughout the course of the
deformation. In place of v they have the value 1. The proportionality constant
de/o is evaluated from an effective stress-effective strain curve for an increment

of plastic strain de in the manner shown in Fig. 3-9.

Example An aluminum thin-walled tube (radius/thickness = 20) is closed at
each end and pressurized to 7 MPa to cause plastic deformation. Neglect the
elastic strain and find the plastic strain in the circumferential (hoop) direction
of the tube. The plastic stress-strain curve is given by & = 170(g)*-2%, where
stress is in MPa.

From the strength of materials equations for thin-walled pressure vessels,
the stresses on the outside of the tube are:

r
o0y =o0, = L (circumferential direction)

!

pr ! P o
8 ) (longitudinal direction)

0, =0, =0 (radial direction)
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From the Levy-Mises equations

de 1 de QH_ _ de mQHV
dey = —|01 = MAQ~+QUV = MTHI 2= 313
di 1 di[ 30,
&munﬂ. QuIMT:+Q~v_HmoIIA|
.. de, = —de; andfrom de +de,+ de;=0 de, =0
1 o.\2 o 2 172
mHIAQ~IWv+A|Nonv+AoI3v~
e -8,
g, = uﬂ —7(20)= 140 MPa & = ﬁ (140) = 121 MPa
1/0.25
5= 1706°%° &= A%v = (0.712)* = 0.257

Em_ — 0% + (0 — (—dey))? + (—de; —dey)"]'?

3 [® 3 N3
de, = Y= g5 sn%h %numﬁ@n%awmduoms

Prandtl-Reuss Equations (Elastic-Plastic Solid)

The Levy-Mises equations can only be applied to problems of large plastic

deformation because they neglect elastic strains. To treat the important, but more
difficult problems in the elastic-plastic region it is necessary to consider both
elastic and plastic components of strain. These equations were proposed by
Prandtl (1925) and Reuss (1930).

The total strain increment is the sum of an elastic strain increment de* and a

 plastic strain increment de”.

de,; = def + def, (3-48)
From Egs. (2-52) and (2-69), the elastic strain increment is given by
de de 1+v v
def = Tm.. - %i + by =~ doy = Loud,
1+ 1-2vdoy,
or def = do/; + — 8, (3-49)

The plastic strain increment is given by the Levy-Mises equations, which can be
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written as

3 di
def = = —o, (3-50)

Yo
Thus, the stress, strain relations for an elastic-plastic solid are given by

1+vw 1+ 2» do 3 de
dofj+ —— —"28, + = —a/, (3-51)

de; = B 3 us 235

(¥} m

Solution of Plasticity Problems

The Levy-Mises and Prandtl-Reuss equations provide relations between the
increments of plastic strain and the stresses. The basic problem is to calculate the
next increment of plastic strain for a given state of stress when the loads are
increased incrementally. If all of the increments of strain are known, then the
total plastic strain is simply determined by summation. To do this we have
available a set of plastic stress-strain relationships, either Eqgs. (3-47) or (3-51), a
yield criterion, and a basic relationship for the flow behavior of the material in
terms of a curve of ¢ vs. & In addition, a complete solution also must satisfy the
equations of equilibrium, the strain-displacement relations, and the boundary
conditions. The reader is referred to the several excellent texts on plasticity listed
at the end of this chapter for examples of detailed solutions.! Although the
incremental nature of plasticity solutions in the past has resulted in much labor
and infrequent application of the available techniques, the current widespread use
of digital computers and finite element analysis should make plasticity analysis of
engineering problems more commonplace.

3-12 TWO-DIMENSIONAL PLASTIC FLOW —SLIP-LINE
FIELD THEORY

In many practical problems, such as rolling and strip drawing, all displacements

can be considered to be limited to the xy plane, so that strains in the z direction

can be neglected in the analysis. This is known as a condition of plane strain.
When a problem is too difficult to an exact three-dimensional solution, a good
indication of the stresses often can be obtained by consideration of the analogous
plane-strain problem. ,

Since a plastic material tends to deform in all directions, to develop a
plane-strain condition it is necessary to constrain flow in one direction. Con-
straint can be produced by an external lubricated barrier, such as a die wall (Fig.
3-10a), or it can arise from a situation where only part of the material is
deformed and the rigid (elastic) material outside the plastic region prevents the
spread of deformation (Fig. 3-10b).

! A number of plasticity problems are worked out in 2reat detail in Lubahn and Felgar op. cit.,
Chaps & and 9.
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o . 7 \w\ Rigid
Im ] ) ™ g
Vi T 2
Die =
e
(a) (6)

Figure 3-10 Methods of developing plastic constraint.

If the plane-strain deformation occurs on planes parallel to the xy plane, then

g, =¢t =7,=0

,=&,=¢,=0 and 7

XZ

Since 7., = 7,, = 0, it follows that o, is a principal stress. From the Levy-Mises
equations, Eq. (3-47)
de 1
de,=0= =l M?x.foyv

o.+o
and 0, = |~|¥ (3-52)

Note that although the strain is zero in the z direction, a restraining stress acts in
this direction. .
Equation (3-52) could just as well have been written in terms of the principal

stresses 03 = (6, + 0,)/2.
This principal stress will be intermediate between o, and o,, so that the

maximum-shear-stress yield criterion is given by
6, —0,=0,=2k (3-53)
where k is the yield stress in pure shear.
If the value for the intermediate principal stress g, is substituted into the von
Mises’ yield criterion, Eq. (3-12) it reduces to

2
0, — 0, = —=0, (3-54)

V3
However, for the von Mises’ yield criterion o, = V3 k so that Eq. (3-54) becomes
0, — 0, =2k . (3-55)
Thus, for a state of plane strain the maximum-shear stress and von Mises’ yield
criteria are equivalent. It can be considered that two-dimensional plastic flow will
begin when the shear stress reaches a critical value of k.

Slip-line field theory is based on the fact that any general state of stress in
plane strain consists of pure shear plus a hydrostatic pressure. We could show this
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P —= -~ p = Q+24—> - Q@+ 2k
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Q+k + (d) «
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Hydrostatic pressure Pure shear
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Figure 3-11 Demonstration that a state of stress in plane strain may be expressed as the sum of a
hydrostatic stress and pure shear.

by applying the equations for transformation of stress from one set of axes to
another, Egs. (2-5) to (2-7), but it perhaps is more instructive to see this
diagrammatically. In Fig. 3-11, let the state of stress consist of 0, = —Q,
03 = —P, and 0, = (— P — Q)/2. The maximum shear stress is given by

Toax = 01 — 0y = 2k
-Q+P=2k
or in Fig. 3-11b, P=0+ 2k

But we can write the state of stress in Fig. 3-11b as in Fig. 3-11c, which in turn
can be written as the sum of a hydrostatic pressure and a biaxial state of stress
Fig. 3-114. The latter is the stress state in pure torsion, which for planes rotated
by 45° consists of pure shear stresses. Thus, a general state of stress in plane
strain can be decomposed into a hydrostatic state of stress p (in this case
compression) and a state of pure shear k. The components of the stress tensor for
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o
Q._ -1
[ — QN =—p — ) )
Figure 3-12 Mohr's circle representation of stresses in
93 =% Fig. 3-9a.
plane strain are
p k O
o,=|k p O
0 0 p

Mohr’s circle representation for the state of stress given in Fig. 3-11 is mroi.:
in Fig. 3-12. If ¢, = —Q and 0, = —P, then 0, = (—Q — P)/2 = —p. This
follows because

g, +0,+ 04 1
=0,= ———=-Z|0+ -+ +P
p=o, : 512
Qo+ P
)
Also, the radius of Mohr’s circle is 1, = k, where k is the yield stress in pure
shear. Thus, using Fig. 3-12, we can express the principal stresses

= —0,

p

o,=-p+k
6,="p
o,=-—-p—k

The slip-line field theory for plane strain allows the determination of stresses
in a plastically deformed body when the deformation is not uniform throughout
the body. In addition to requiring plane-strain conditions, the theory assumes an
isotropic, homogeneous, rigid ideal plastic material. For such a E.E.mﬁ&:..rﬁaab.
ing material k is everywhere constant but p may vary from point to point. The
state of stress at any point can be determined if we can find the magnitude of p
and the direction of k. The lines of maximum shear stress occur in two
orthogonal directions a and 8. These lines of maximum shear stress are ow:o.a
slip lines and have the property that shear strain is 2 maximum and linear strain is
zero tangent to their directions. The slip lines give the direction of p at any point
and the changes in magnitude of p are deduced from the rotation of :..o slip line
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WX

(a) () ()

oy >0y

Figure 3-13 (a) Stress state on physical body; (b) Mohr's circle for (a); (¢) relationship of physical
body and a and 8 slip lines.

between one point and another in the field. It should be noted that the slip lines
referred to in this section are geometric constructions which define the character-
istic directions of the hyperbolic partial differential equations for the stress under
plane-strain conditions. These slip lines bear no relationship to the slip lines
observed under the microscope on the surface of a plastically deformed metal.
To arrive at the equations for calculating stress through the use of slip-line

fields, we must now relate the stresses on a physical body in the xy coordinate

system to p and k. Figure 3-13b shows the Mohr’s circle representation of the
stress state given in Fig. 3-13a. The stresses may be expressed as

o,= —p—ksin2¢

o,=—p- Alkmwbwﬁv = —p+ ksin2¢
g,= —p
ﬁcukoomme

where 2¢ is a counterclockwise angle on Mohr’s circle from the physical x plane
to the first plane of maximum shear stress. This plane of maximum shear stress is
known as an a slip line. The relationship between the stress state on the physical
body and the « and B slip lines is given in Fig. 3-13c.

The variation of hydrostatic pressure p with change in direction of the slip
lines is given by the Hencky equations ..

P + 2k = constant along an « line (3-56)
P — 2k¢ = constant along a-8 line
These equations are developed' from the equilibrium equations in plane strain.

The use of the Hencky equations will be illustrated with the example of the

! See for example W. Johnson and P. B. Mellor, “Plasticity for Mechanical Engineers,” pp.
263-265, D. Van Nostrand Company, Inc., Princeton, N.J., 1962.
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Figure 3-14 Slip-line field for frictionless indentation with a flat punch.

indentation of a thick block with a flat frictionless punch. The slip-line field
shown in Fig. 3-14 was first suggested by Prandtl* in 1920. At E.o ?wn surface on
the frictionless interface between the punch and the Eoow. :ﬂ slip lines meet .Eo
surface at 45° (see Prob. 3-15). We could construct the m_ﬁ-.__:a field _uw. starting
with triangle AFB, but we would soon see that if all plastic @&o_.aw:o: were
restricted to this region, the metal could not move v.oomcmo it iop.:a be sur-
rounded by rigid (elastic) material. Therefore, the plastic zone described by the
slip-line field must be extended along the free surface to AH mba. BD. . .
To determine the stresses from the slip-line field, we start with a mi_En point
such as D. Since D is on a free surface, there is no stress normal to this surface.

6,=0= —p+ksin2¢

and o,=—p—ksin2¢=—-p—p=—2p

The stresses at point D are shown in Fig. 3-15. From the Mohr’s circle we learn
that p = k. In order to use the Hencky equations we need to know whether Fm
slip line through D is an a or B line. This is done most simply from the following
sign convention:

For a counterclockwise rotation about the point of Eﬁoamoomo.n of two slip
lines, starting from an o-line the direction of the algebraically highest
principal stress o, is crossed before a B line is crossed.

— -——— o0y =—2p=103 -27

1
\ _ Figure 3-15 (a) Stresses at point
(g} (5) D; (b) Mohr’s circle.

1 A different slip-line field was later suggested by R. Hill. Although Eo.mmm field is &a,n.—.onr it
leads to the same value of indentation pressure. This illustrates the fact that slip-line field solutions are
not necessarily unique.

"
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Applying this convention, we see that the slip line from D to E is an « line. Thus,
the first Hencky equation applies,

p+2kp=0C
and if we use DE as the reference direction so =0,
p=C =k
Because DE is straight p is constant from D to E and
Pp=pg=k
Between E and F' the tangent to the « slip line rotates through /2 rad. Since the
tangent to the « line rotates clockwise, d¢ = —m/2. If we write the Hencky
equation in differential form, for clarity
dp + 2kde =0
or Aﬁmlﬁmv+m\£$ﬁlﬂmv =0
.Sqlw+nwﬁlw. Iov =0
Pr=k(m+1)

Note that the pressure at F’ is the same as at F because the slip line is straight
and that the value of p under the punch face at G is also the same. (We stayed
away from A and B at the punch edges because these are points of pressure
discontinuity.) To find the punch pressure required to indent the block, it is

necessary to convert the hydrostatic pressure at the punch interface into the
vertical stress o,.

Pr=Pp =ps=k(m+ 1)
0,= —p;+ ksin2¢

From Fig. 3-13c, recall that the angle ¢ is measured by the counterclockwise
angle from the physical x axis to the « line.

37
0,=—k(r+1)+ wmmzmAan

m
0,=—kr—k—k= Imk?+ Mv (3-57)
If we trace out other slip lines, we shall find in the same way that the normal
compressive stress under the punch is 2k(1 + m/2), and the pressure is uniform.
Since k = 0,/ V3,
20, T
g, = HAH + m.v = 30, Aw-mmv
This shows that the yield pressure for the indentation of a thick block with a
narrow punch is nearly three times the stress required for the yielding of a
cylinder in frictionless compression. This increase in flow stress is a geometrical
constraint resulting from the localized deformation under the narrow punch.
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e described above is one of the simplest situations that §<o_.<om
m:@..H._HWM MMMHW_F the general case the mmﬁ-ma._n field mo_om:on must also Nmmw_w@
certain velocity conditions to assure oanEcdzH. Prager' and Thomsen _,m,a
given general procedures for constructing mrw..__Eo m&a.w. Eoﬂa.car ﬁ_aqm _M no
easy method of checking the validity of a solution. Partial experimental veri _Mw-
tion of theoretically determined slip-line fields E.m been obtained for mEE stee ..:w
etching techniques® which delineate the plastically ﬂom.ogaa. .dm_wnww TWMM mM
localized plastic regions can be delineated by an etching technique in Fe- i

steel.?
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